Chapter 9: Molecular Geometry and Bonding Theories Jennie L. Borders

Section 9.1 – Molecular Shapes

- Lewis do not indicate the shapes of molecules; they simply show the number and types of bonds between atoms.
- The overall shape of a molecule is determined by its bond angles, the angles made by the lines joining the nuclei of the atoms in the molecule.

- The shape of any particular AB_n molecule can usually be derived from one of five basic geometric structures.
- A = the central atom
- B = the bonded atoms
- n = the number of bonded atoms

 An AB or AB₂ molecule has a linear shape with 180° bond angles.

 An AB₃ molecule has a trigonal planar shape with 120° bond angles.

 An AB₄ molecule has a tetrahedral shape with 109.5° bond angles.

 An AB₅ molecule has a trigonal bipyramidal shape with 90° and 120° bond angles.

 An AB₆ molecule has an octahedral shape with 90° bond angles.

Section 9.2 – The VSEPR Model

 The valence shell electron pair repulsion (VSEPR) model can be used to predict the shape of a molecule based on the fact that electrons repel one another

Bonding vs. Nonbonding

- A bonding pair of electrons are located between the nuclei of the two atoms that are bonded together.
- A nonbonding pair (lone pair) of electrons are located on one atom.
- Both pairs represent and electron domain which is a region in which electrons are likely to be found.

Multiple Bonds

• Double and triple bonds only represent one electron domain.

$$\ddot{\mathbf{G}} = \mathbf{C} = \ddot{\mathbf{G}} \qquad \overset{\mathbf{H} - \mathbf{N} - \mathbf{H}}{\overset{\mathbf{H}}}{\overset{\mathbf{H}}{\overset{\mathbf{H}}{\overset{\mathbf{H}}}{\overset{\mathbf{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}{\overset{\mathcal{H}}}{$$

- The best arrangement of electron domains is the one that minimizes the repulsions among the electrons.
- The arrangement of electrons about the central atom of an AB_n molecule or ion is called its electron-domain geometry.
- The molecular geometry is the arrangement of only the atoms in a molecule or ion – nonbonding pairs are excluded from the shape.

Electron Domain vs. Molecular

 The electron domain geometry for NH₃ is tetrahedral, but the molecular geometry is trigonal pyramidal.

• Possible shapes for AB_2 : <u>Bonding</u> <u>Nonbonding</u> <u>Shape</u> 2 0 linear H - Be - H

180°

Possible shapes for AB₃:
<u>Bonding</u> <u>Nonbonding</u> <u>Shape</u>
3 0 trigonal planar

 Possible shapes for AB₃: Bonding Nonbonding Shape bent 2 1 X N X

Possible shapes for AB₄:
<u>Bonding</u> <u>Nonbonding</u> <u>Shape</u>
3 1 trigonal pyramidal

Sample Exercise 9.1

- Use the VSEPR model to predict the molecular geometry of
 - a. O₃

b. $SnCl_3^-$

Practice Exercise

- Predict the electron-domain geometry and the molecular geometry for
 - a. $SeCl_2$

Bond Angles

- Because a nonbonding pair experiences less nuclear attraction than bonding pairs, its electron domain is more spread out.
- As a result, the electron domains for nonbonding electron pairs exert greater repulsive forces on adjacent electron domains and tend to compress the bond angles.

Bond Angles

 Notice the difference in the bond angles of CH₄, NH₃, and H₂O, all of which have a tetrahedral electron domain geometry.

Bond Angles

• Multiple bonds contain a higher electron density so they also represent larger electron domains.

Expanded Octet Molecules

- When a central atom has 5 electron domains, then the shape is trigonal bipyramidal.
- There are two different positions on this molecule: axial and equatorial. The axial position is at a 90° angle to its neighbors. The equatorial position is at 120° or 90° angles to its neighbors.

Axial vs. Equatorial

 The equatorial position experiences less repulsion, so nonbonding pairs will always occupy the equatorial positions.

- Possible shapes for AB₅:
- Bonding 5

<u>Nonbonding</u> 0 <u>Shape</u> trigonal bipyramidal

• Possible shapes for AB₆:

Bonding 6

<u>Shape</u> octahedral

Sample Exercise 9.2

 Use the VSEPR model to predict the molecular geometry of

a. SF_4

b. IF₅

Sample Exercise

Predict the electron-domain geometry and molecular geometry of

a. CIF_3

b. ICl_4^-

Shapes of Large Molecules

• Larger molecules can be broken into sections to see the shapes involved.

	H H-C H H	:0: C	——ё—н
Number of electron domains	4	3	4
Electron-domain geometry	Tetrahedral	Trigonal planar	Tetrahedral
Predicted bond angles	109.5°	120°	109.5°

Sample Exercise 9.3

 Eyedrops used for dry eyes usually contain the water-soluble polymer called poly(vinylalcohol), which is based on the unstable organic molecule called vinyl alcohol:

Predict the approximate values for the H - O - Cand the O - C - C bond angles.

Sample Exercise

 Predict the H – C – H ad C – C – C bond angles in the following molecule, called propyne:

Section 9.3 – Molecular Shape and Molecular Polarity

 Remember that bond polarity is a measure of how equally the electrons in a bond are shared between the two atoms of the bond.

Bond Polarity

- For a molecule that consists of more than two atoms, the dipole moment depends on both the polarities of the individual bonds and the geometry of the molecule.
- Bond dipoles and dipole moments are vector quantities – magnitude and direction.

Polarity

- The overall dipole moment is the vector sum of its bond dipoles.
- If the dipoles are of equal magnitude but in opposite directions, then they cancel out making the molecule nonpolar.

Polarity

• If the dipoles do not cancel out, then the molecule is polar. Be sure to consider shape before deciding polarity.

Sample Exercise 9.4

 Predict whether the following molecules are polar or nonpolar:

a. BrCl

b. SO_2

c. SF₆

Practice Exercise

Determine whether the following molecules are polar or nonpolar:

a. NF_3

b. BCl₃

Section 9.4 – Covalent Bonding and Orbital Overlap

- In the Lewis theory, covalent bonding occurs when atoms share electrons.
- In the valence-bond theory, we visualize the buildup of electron density between two nuclei as occurring when the orbitals of the atoms overlap.
- The overlap of the orbitals allows two electrons of opposite spin to share the common space between the nuclei, forming a covalent bond.

Bond Length

• The bond length of a covalent bond corresponds to the minimum of the potential energy curve.

Internuclear Distance (pm)

Section 9.5 – Hybrid Orbitals

- To explain geometries, we assume that the atomic orbitals on an atom mix to form new orbitals called hybrid orbitals.
- The process of mixing atomic orbitals is called hybridization.
- The number of hybrid orbitals must equal the number of atomic orbitals.

sp Hybrid Orbitals

- BeF_2 · F Be F
- $F = \frac{\uparrow \downarrow}{1s}$ $\frac{\uparrow \downarrow}{2s}$ $\frac{\uparrow \downarrow}{2p}$ $\frac{\uparrow \downarrow}{1s}$ $\frac{\uparrow \downarrow}{2p}$
- This shows that F can bond by filling its 2p sublevel.
- Be = <u>↑↓</u> <u>↑↓</u>
- 1s 2s 2p

sp Hybrid Orbitals

 Since Be has no unpaired electrons, it should not form bonds, so one of the electrons is "promoted" to a 2p orbital.

• Be =
$$\frac{\uparrow \downarrow}{1s}$$
 $\frac{\uparrow}{2s}$ $\frac{\uparrow}{2p}$

 However, this arrangement would not make the two Be – F bonds equal because one would involve and s orbital and one would involve a p orbital.

sp Hybrid Orbitals

 We can form 2 hybrid sp orbitals which have 2 lobes like a p orbital, but 1 lobe is much larger than the other.

• The remaining 2p orbitals remain the same.

sp Hybrid Orbital

• The hybrid orbitals and bonding in BeF₂ would look like the following diagrams.

Large lobe of sp hybrid orbital

Hybrid Orbitals

- Whenever we mix a certain number of atomic orbitals, we get the same number of hybrid orbitals.
- Each of the hybrid orbitals is equivalent to the others but points in a different direction.
- Thus mixing one 2s and one 2p orbital yields two equivalent sp hybrid orbitals that point in opposite directions

- This shows that F can bond by filling its 2p sublevel.
- $B = \frac{\uparrow \downarrow}{1s}$ $\frac{\uparrow \downarrow}{2s}$ $\frac{\uparrow}{2p}$

 Since B has one unpaired electron, it should only form one bond, so one of the electrons is "promoted" to a 2p orbital to allow for 3 bonds.

•
$$B = \frac{\uparrow \downarrow}{1s}$$
 $\frac{\uparrow}{2s}$ $\frac{\uparrow}{2p}$

 However, this arrangement would not make the three B – F bonds equal because one would involve and s orbital and two would involve p orbitals.

 We can form 3 hybrid sp² orbitals which have 2 lobes like a p orbital, but 1 lobe is much larger than the other.

The remaining 2p orbital remains the same.

• The hybrid orbitals and bonding in BF₃ would look like the following diagrams.

- This shows that H can bond by filling its 1s sublevel.
- $C = \frac{\uparrow \downarrow}{1s}$ $\frac{\uparrow \downarrow}{2s}$ $\frac{\uparrow}{2p}$

- Since C has two unpaired electrons, it should only form two bonds, so one of the electrons is "promoted" to a 2p orbital to allow for 4 bonds.
- $C = \frac{\uparrow \downarrow}{1s}$ $\frac{\uparrow}{2s}$ $\frac{\uparrow}{2p}$ $\frac{\uparrow}{1}$

 However, this arrangement would not make the four C – H bonds equal because one would involve and s orbital and three would involve p orbitals.

 We can form 4 hybrid sp³ orbitals which have 2 lobes like a p orbital, but 1 lobe is much larger than the other.

 The hybrid orbitals and bonding in CH₄ would look like the following diagrams.

Hybrid Orbital Chart

Sample Exercise 9.5

 Indicate the hybridization of orbitals employed by the central atom in NH₂⁻.

Practice Exercise

 Predict the electron-domain geometry and the hybridization of the central atom in SO₃²⁻.

Section 9.6 – Multiple Bonds

 A sigma (σ) bond is a bond that occurs when a line that passes through the two nuclei of the bonded atoms also passes through the middle of the orbital overlap.

Multiple Bonds

- A pi (π) bond is a bond that occurs when the overlap of the orbitals is perpendicular to the internuclear axis.
- In a pi bond the overlap occurs above and below the internuclear axis.

Pi vs. Sigma

- Unlike a sigma bond, in a pi bond there is no probability of finding the electron on the internuclear axis.
- Since the p orbitals in a pi bond overlap sideways rather than directly facing each other, the total overlap in a pi bond tends to be less than in a sigma bond. This means that pi bonds tend to be weaker than sigma bonds.

Type of Bond

• Single bonds are sigma bonds.

• A double bond consists of 1 sigma bond and 1 pi bond.

Type of Bond

 A triple bond consists of 1 sigma bond and 2 pi bonds.

 Since pi bonds occur using unhybridized p orbitals, it can only occur with sp and sp² hybridization.

Sample Exercise 9.6

• Formaldehyde has the Lewis structure

c = oH Describe how the bonds in formaldehyde are formed in terms of overlaps of appropriate hybridized and unhybridized orbitals.

Practice Exercise

• Consider the acetonitrile molecule:

a. Predict the bond angles around each carbon atom.

Practice Exercise Con't

b. Describe the hybridization at each carbon atom.

c. Determine the total number of σ and π bonds in the molecule.

Localized and Delocalized Electrons

- Localized electrons belong to the two atoms that form the bond.
- When resonance structures exist for a molecule, the electrons move around and are called delocalized.

Sample Exercise 9.7

• Describe the bonding in the nitrate ion, NO_3^- . Does this ion have delocalized π bonds?

Practice Exercise

 Which of the following molecules or ions will exhibit delocalized bonding: SO₃, SO₃²⁻, H₂CO, O₃, NH₄⁺?

Sample Integrative Exercise

 Elemental sulfur is a yellow solid that consists of S₈ molecules. The structure of the S₈ molecule is an eight-membered ring. Heating elemental sulfur to high temperatures produces gaseous S₂ molecules:

$$S_{8(s)} \rightarrow 4S_{2(g)}$$

a. With respect to electronic structure, which element in the second row of the periodic table is most similar to sulfur?

Sample Integrative Exercise

b. Use the VSEPR model to predict the S - S - Sbond angles in S_8 , and the hybridization at S in S_8 .

Sample Integrative Exercise

d. Use average bond enthalpies (Table 8.4) to estimate the enthalpy change for the reaction just described. Is the reaction exothermic or endothermic?