AP Chemistry Chapter 3 and 4 Jeopardy

Jennie L. Borders

Round 1 – Chapter 3

Chemical Reactions	Reactions/ Balancing Equations	Molar Mass and % Mass	Empirical/ Molecular Formulas	Stoichiometry	Limiting Reagents/ % Yield
100	100	100	100	100	100
200	200	200	200	200	200
300	300	300	300	300	300
400	400	400	400	400	400
500	500	500	500	500	500

Round 2 – Chapter 4

Click to go to Round 2

Chemical Reactions 100

In a chemical reaction, what are the substances to the left of the yield sign and what are the substances to the right of the yield sign?

Reactants \rightarrow Products

Chemical Reactions 200

What is the difference in a subscript, a superscript, and a coefficient?

3SO₄²⁻ 3 = coefficient 4 = subscript 2- = superscript Chemical Reactions 300 What are the abbreviations for the states of matter encountered in chemical reactions?

> (s) = solid (l) = liquid (g) = gas (aq) = aqueous

Chemical Reactions 400 What is a catalyst and where is it written in a chemical equation? A catalyst is a substance that speeds up a reaction but is not consumed in the reaction. A catalyst is written above the yield sign.

Chemical Reactions 500 When heat is added as a catalyst, what is written above the yield sign?

Reactions/Balanced Equations 100 Balance the following equation and tell the type of reaction. $C_5H_{10}O_{2(l)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$ $2C_5H_{10}O_{2(l)} + 13O_{2(g)} \rightarrow 10CO_{2(g)} +$ $10H_2O_{(q)}$ **Combustion reaction**

Reactions/Balanced Equations 200 Balance the following equation and tell the type of reaction. $Mg_3N_{2(s)} + H_2SO_{4(aq)} \rightarrow MgSO_{4(aq)} +$ $(NH_4)_2SO_{4(aq)}$ $Mg_3N_{2(s)} + 4H_2SO_{4(aq)} \rightarrow 3MgSO_{4(aq)}$ $+ (NH_4)_2 SO_{4(aq)}$ **Double displacement**

Reactions/Balanced Equations 300 Write the balanced equation and type of reaction: Zinc metal reacts with sulfuric acid to form hydrogen gas and aqueous zinc sulfate. $Zn_{(s)} + H_2SO_{4(aq)} \rightarrow H_{2(g)} + ZnSO_{4(aq)}$ Single displacement

Reactions/Balanced Equations 400 Write the balanced equation: When liquid phosphorus trichloride is added to water, it reacts to form phosphorous acid and hydrochloric acid.

 $PCI_{3(I)} + 3H_2O_{(I)} \rightarrow H_3PO_{3(aq)} + 3HCI_{(aq)}$

Reactions/Balanced Equations 500

Write the balanced equation and reaction type: When hydrogen sulfide gas is passed over solid hot iron(III)hydroxide, the resultant reaction produces solid iron(III)sulfide and water vapor.

 $\begin{array}{c} 3H_2S_{(g)} + 2Fe(OH)_{3(s)} \rightarrow Fe_2S_{3(s)} + \\ & 6H_2O_{(g)} \\ \hline Double Displacement \end{array}$

Molar Mass and % Mass 100

Calculate the molar mass of potassium permanganate.

 $KMnO_4 = 158 g/mol$

Molar Mass and % Mass 200

Calculate the molar mass of chromium(III)sulfate.

 $Cr_2(SO_4)_3 = 392.3 \text{ g/mol}$

Molar Mass and % Mass 300 Calculate the % by mass of oxygen in morphine, C₁₇H₁₉NO₃.

16.84% O

Molar Mass and % Mass 400 Calculate the % by mass of carbon in codeine, C₁₈H₂₁NO₃.

77.42% C

Molar Mass and % Mass 500 Calculate the % by mass of each element in cocaine, C₁₇H₂₁NO₄.

67.33% C 6.93% H 4.62% N 21.12% O

What is the molecular formula of a compound with an empirical formula of CH₂ and a molar mass of 84 g/mol.

Give the empirical formula of a compound if a sample contains 11.66g Fe and 5.01g O.

Determine the empirical formula of a compound that is 21.7% C, 9.6% O, and 68.7% F.

C₃OF₆

Determine the empirical formula of a compound that is 32.79% Na, 13.02% Al, and 54.19% F.

Na₃AIF₆

Caffeine contains 49.5% C, 5.15%H, 28.9% N, and 16.5%O by mass and has a molar mass of 195 g/mol. Determine the molecular formula for caffeine.

 $C_8H_{10}N_4O_2$

Calculate the number of N atoms in 0.410 mol NH₃.

2.27 x 10²³ N atoms

How many moles of chloride ions are in 0.2250g of aluminum chloride?

5.737 x 10⁻³ mol Cl⁻

How many moles of HF are needed to react with 0.300 mol of Na₂SiO₃?

 $Na_2SiO_{3(s)} + 8HF_{(aq)} \rightarrow H_2SiF_{6(aq)} +$ $2NaF_{(aq)} + 3H_2O_{(I)}$

2.40 mol HF

How many grams of NaN₃ are required to form 10.0g of nitrogen gas? $2NaN_{3(s)} \rightarrow 2Na_{(s)} + 3N_{2(g)}$

15.5 g NaN₃

How many grams of NaN₃ are required to produce 10.0 ft³ of nitrogen gas, about the size of an automotive air bag, if the gas has a density of 1.25 g/L. $2NaN_{3(s)} \rightarrow 2Na_{(s)} + 3N_{2(g)}$

548g NaN₃

What is the percent yield of bromobenzene when 30.0g of benzene reacts with 65.0g of bromine and 42.3g of bromobenzene is produced? $C_6H_6 + Br_2 \rightarrow C_6H_5Br + HBr$

70.1%

How many moles of Na₂CO₃ can be produced when 1.85 mol NaOH and 1.00 mol CO₂ are allowed to react? How many moles of excess reactant remain? $2NaOH_{(s)} + CO_{2(g)} \rightarrow Na_2CO_{3(s)} + H_2O_{(l)}$ 0.925 mol Na₂CO₃ 0.075 mol CO₂ remain

How many grams of carbon dioxide form when 1.00g sodium bicarbonate and 1.00g citric acid are allowed to react. How many grams of excess reagent remain?

 $\frac{3NaHCO_{3(aq)} + H_3C_6H_5O_{7(aq)}}{3H_2O_{(l)} + Na_3C_6H_5O_{7(aq)}} \rightarrow 3CO_{2(g)} + 0.524g CO_2$

0.238g citric acid remain

A solution containing 3.50g sodium carbonate is mixed with one containing 5.00g silver nitrate to form solid silver carbonate and a solution of sodium nitrate. How many grams of sodium carbonate, silver nitrate, silver carbonate, and sodium nitrate are present after the reaction is complete?

Na₂CO_{3(aq)} + 2AgNO_{3(aq)} → Ag₂CO_{3(s)} + 2NaNO_{3(aq)} 0g AgNO₃; 1.94g Na₂CO₃; 4.06g Ag₂CO₃; 2.50g NaNO₃

If you started with 30.0g H₂S and 50.0g O₂, how many grams of S₈ would be produced in a 98% yield? $8H_2S_{(g)} + 4O_{2(g)} \rightarrow S_{8(I)} + 8H_2O_{(g)}$

28g S₈

Vocabulary	Solutions and Electrolytes	Precipitates	Acid-Base Reactions	Oxidation- Reduction Reactions	Concentration and Stoichiometry
200	200	200	200	200	200
400	400	400	400	400	400
600	600	600	600	600	600
800	800	800	800	800	800
1000	1000	1000	1000	1000	1000

What are the definitions of an acid and a base?

An acid produces H⁺ ions in solution (proton donor). A base produces OH⁻ ions in solution (proton acceptor).

Define solute, solvent, and solution. A solute is a substance that has been dissolved. A solvent is the dissolving medium of a solution and is present in the greatest amount. A solution is a homogeneous mixture.

What is the difference in oxidation and reduction?

Oxidation is the loss of electrons. Reduction is the gain of electrons.

What is the difference in a complete ionic equation, a net ionic equation, and spectator ions? A complete ionic equation shows all aqueous substances as ions. A net ionic equation shows only the substances or ions that actually react. A spectator ion is an ion that is not directly involved in the reaction.

What is the difference in the equivalence point and the end point of a titration?

The equivalence point is when the molarity of H⁺ and OH⁻ ions are equal. The end point is when the indicator changes colors.

What is the difference in a strong electrolyte, weak electrolyte, and a nonelectrolyte?

A strong electrolyte fully breaks into ions. A weak electrolyte partially breaks into ions. A nonelectrolyte does not break into ions.

You are presented with three white solids, A, B, and C, which are glucose, NaOH, and AgBr. Solid A dissolves in water to form a conducting solution. B is not soluble in water. C dissolves in water to form a nonconducting solution. Identify A, B, and C.

A = NaOH, B = AgBr, C = glucose

Specify which ions are present in solution upon dissolving each of the following substances in water: Zn²⁺, 2Cl⁻ a. $ZnCl_2$ H^+ , $NO_3^$ b. HNO₃ 2NH₄⁺, SO₄²⁻ c. $(NH_4)_2SO_4$ Ca²⁺, 2OH⁻ d. $Ca(OH)_2$

Formic acid, HCOOH, is a weak electrolyte. What solute particles are present in an aqueous solution of this compound? Write the chemical equation for the ionization of HCOOH. HCOOH, H⁺, COOH⁻ HCOOH $\leftarrow \rightarrow$ H⁺ + COOH⁻

Solutions and Electrolytes 1000Classify each of the following substances are nonelectrolyte, weak electrolyte, or strong electrolyte in water. Weak electrolyte a. H_2SO_3 Nonelectrolyte b. C_2H_5OH Weak electrolyte c. NH_3 Strong electrolyte d. KClO₃ Strong electrolyte e. $Cu(NO_3)_2$

Predict whether each of the following compounds is soluble or insoluble in water: Soluble a. NiCl₂ Insoluble b. Ag₂S Soluble C. Cs_3PO_4

Will precipitation occur when Na₂CO₃ and AgNO₃ are mixed? If so, write a balanced equation for the reaction.

> Yes. Na₂CO_{3(aq)} + 2AgNO_{3(aq)} \rightarrow Ag₂CO_{3(aq)} + 2NaNO_{3(aq)}

Name the spectator ions that are present when solutions of Pb(NO₃)₂ and Na₂S are mixed.

NO₃⁻ and Na⁺

Separate samples of a solution of an unknown salt are treated with dilute solutions of HBr, H₂SO₄, and NaOH. A precipatate forms in all three cases. Which of the following cations could the solution contain: K⁺, Pb²⁺, Ba²⁺?

Pb²⁺

An unlabeled bottle contains a solution of one of the following: AgNO₃, CaCl₂, or $AI_2(SO_4)_3$. A friend suggests that you test a portion of the solution with $Ba(NO_3)_2$ and then with NaCl solutions. Explain how these two tests together would be sufficient to determine which salt is present in the solution.

Ba(NO₃)₂ would form a precipitate with Al₂(SO₄)₃. NaCl would form a precipitate with AgNO₃. CaCl₂ would not form a precipitate with either solution.

Explain which of the following solutions has the largest concentration of solvated protons:

- a. 0.2M LiOH
- b. 0.2M HI
- c. $1.0M CH_3OH$

0.2M HI – that is the only one that dissociates to form H⁺.

Label the following substances are strong or weak acid, strong or weak base, a salt, or none.

a. HF Weak acid b. CH_3CN None c. $NaClO_4$ Salt d. $Ba(OH)_2$ Strong base

Complete and balance the following molecular equation, and then write the net ionic equation: $HBr_{(aq)} + Ca(OH)_{2(aq)} \rightarrow$ $2HBr_{(aq)} + Ca(OH)_{2(aq)} \rightarrow 2H_2O_{(l)}$ + CaBr_{2(aq)} Net ionic equation: $H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(l)}$

Complete and balance the following molecular equation, and then write the net ionic equation: $Cu(OH)_{2(s)} + HCIO_{4(aq)} \rightarrow$ $Cu(OH)_{2(s)} + 2HCIO_{4(aq)} \rightarrow 2H_2O_{(l)} +$ $Cu(ClO_4)_{2(aq)}$ Net ionic equation: $Cu(OH)_{2(s)} + 2H^+_{(aq)} \rightarrow H_2O_{(l)} +$ Cu^{2+}

Acid-Base Reactions 1000 Write the molecular and net ionic equation when solid magnesium carbonate reacts with an aqueous solution of perchloric acid. $MgCO_{3(s)} + 2HCIO_{4(aq)} \rightarrow H_2O_{(I)}$ $+ CO_{2(q)} + Mg(CIO_4)_{2(aq)}$ Net ionic equation: $MgCO_{3(s)} + 2H^+_{(aq)} \rightarrow H_2O_{(l)} +$ $CO_{2(q)} + Mg^{2+}(aq)$

Oxidation-Reduction Reactions 200

Determine the oxidation numbers for each element in MnO₄-.

Mn = +7 O = -2

Oxidation-Reduction Reactions 400 Which element is oxidized and which element is reduced in the following reaction: $3Fe(NO_3)_{2(aq)} + 2AI_{(s)} \rightarrow 3Fe_{(s)} +$ $2AI(NO_3)_{3(aq)}$ Oxidized = AI **Reduced = Fe**

Oxidation-Reduction Reactions 600 Which element is oxidized and which element is reduced in the following reaction: $PbS_{(s)} + 4H_2O_{2(aq)} \rightarrow PbSO_{4(s)} +$ $4H_2O_{(I)}$ Oxidized = S Reduced = O

Oxidation-Reduction Reactions 800 Write the balanced equation for the following reactions. If no reaction occurs, then write NR. a. Iron metal is added to a copper (II) nitrate solution. $Fe_{(s)} + Cu(NO_3)_{2(aq)} \rightarrow Cu_{(s)} +$ b. Zinc metal is added to a solution of magnesium sulfate.

Oxidation-Reduction Reactions 1000 Write the balanced molecular and net ionic equations for the reaction between manganese and dilute sulfuric acid. Identify which element is reduced and which is oxidized.

 $\begin{array}{l} \mathsf{Mn}_{(\mathsf{s})} + \mathsf{H}_2\mathsf{SO}_{4(\mathsf{aq})} \xrightarrow{} \mathsf{H}_{2(\mathsf{g})} + \mathsf{Mn}\mathsf{SO}_{4(\mathsf{aq})} \\ \mathsf{Mn}_{(\mathsf{s})} + 2\mathsf{H}^+_{(\mathsf{aq})} \xrightarrow{} \mathsf{H}_{2(\mathsf{g})} + \mathsf{Mn}^{2+}_{(\mathsf{aq})} \\ \mathsf{Oxidized} = \mathsf{Mn} \\ \mathsf{Reduced} = \mathsf{H} \end{array}$

Concentration and Stoichiometry 200 Calculate the molar concentration of a solution containing 14.75g of calcium nitrate in 1.375L of solution.

0.06537M Ca(NO₃)₂

Concentration and **Stoichiometry 400** Indicate the concentration of each ion or molecule present in a mixture of 45.0mL of 0.272M NaCl and 65.0mL of 0.0247M ammonium carbonate. Assume that the volumes are additive. 0.111M Na+, 0.111M CF, 0.0292M NH₄⁺, 0.0146M CO₃²⁻

Concentration and Stoichiometry 600 You have a stock solution of 14.8M NH₃. How many milliliters of this solution should you dilute to make 1000.0mL of 0.250M NH₃?

16.9mL

Concentration and Stoichiometry 800 What volume of 0.115M HClO₄ solution is needed to neutralize 50.00mL of 0.0875M NaOH?

38.0mL

Concentration and Stoichiometry 1000 If 45.3mL of 0.108M HCI solution is needed to neutralize a solution of KOH, how many grams of KOH must be present in the solution?

0.275g KOH