Chapter 19 – Chemical Thermodynamics

Jennie L. Borders

Section 19.1 – Spontaneous Processes

- The rates of chemical reactions are controlled by the activation energy.
- Equilibrium is when opposite processes occur at the same rate, so equilibrium is also controlled by energy.

Attainment of equilibrium in a reversible reaction

First Law of Thermodynamics

- The first law of thermodynamics states that energy is conserved.
- Energy can be transferred or change forms, but the total energy of the universe remains constant.

$$\Delta E = q + w$$

Spontaneous Processes

- A spontaneous process is one that proceeds on its own without any outside assistance.
- The AP exam will sometimes refer to spontaneous as "thermodynamically favored."

Spontaneous Processes

- Processes that are spontaneous in one direction are nonspontaneous in the opposite direction.
- Even though a process is spontaneous, that does not mean that it happens quickly.

Entropy Order→Disorder

- Predict whether the following processes are spontaneous as described, spontaneous in the reverse direction, or in equilibrium:
- a. When a piece of metal is heated to 150°C is added to water at 40°C, the water gets hotter.

Sample Exercise 19.1 con't

b. Water at room temperature decomposes into $H_{2(g)}$ and $O_{2(g)}$

c. Benzene, C₆H_{6(g)}, at a pressure of 1 atm condenses to liquid benzene at the normal boiling point of benzene, 80.1°C.

Practice Exercise

 Under 1 atm pressure CO_{2(s)} sulimes at -78°C. Is the transformation of CO_{2(s)} to CO_{2(g)} a spontaneous process at -100°C and 1 atm pressure?

Spontaneity

- The loss of energy is a common feature of spontaneous change.
- Exothermic reactions tend to be spontaneous; however, endothermic reactions can be spontaneous too.

Reversible vs. Irreversible

- A reversible process is when a system is changed in such a way that the system and surroundings can be restored to their original state by exactly reversing the change.
- This is an ideal situation which does not exist.

Reversible vs. Irreversible

- An irreversible process is one that cannot simply be reversed to restore the system and its surroundings to their original states.
- All processes that we see are irreversible.

Isothermal

• A process that occurs at a constant temperature is called isothermal.

Guppright & 2007. Provision Education, Inc., publishing as Peramon Addision Wesley.

Section 19.2 – Entropy and the Second Law of Thermodynamics

- Entropy (S) is the degree of randomness of distribution of energy of the molecules of a system.
- For an isothermal process,

$$\Delta S = \underline{q_{rev}}$$

• The units for entropy are usually J/K.

 The element mercury, Hg, is a silvery liquid at room temperature. The normal freezing point of mercury is -38.9°C, and its molar enthalpy of fusion is ΔH_{fusion} = 2.29 kJ/mol. What is the entropy change of the system when 50.0g of Hg_(I) freezes at the normal freezing point?

Practice Exercise

 The normal boiling point of ethanol, C₂H₅OH, is 78.3°C, and its molar enthalpy of vaporization is 38.56 kJ/mol. What is the change in entropy in the system when 68.3g of C₂H₅OH_(g) at 1 atm condenses to liquid at the normal boiling point?

Second Law of Thermodynamics

- The change in entropy for a spontaneous process is always positive.
- The second law of thermodynamics states that any spontaneous irreversible process results in an overall increase in entropy.

Section 19.3 – The Molecular Interpretation of Entropy

- Molecules can possess different types of motion.
- Translational motion is the movement of an entire particle from one place to another.

Motion of Particles

Vibrational motion is when the atoms in a molecule stretch or shift the bonds.

Rotational motion is when the entire molecule spins.

Microstates

- A microstate is a single possible arrangement of the positions and kinetic energies of the gas molecules when the gas is in a specific thermodynamic state.
- Entropy increases as the number of microstates increases.

Entropy

- In most cases, and increase in entropy and the number of microstates can be caused by the following:
- 1. An increase in temperature
- 2. An increase in volume
- **3**. An increase in the number of independently moving particles

Solutions

- When a solution is formed by dissolving a solid into water, the solute particles gain entropy by separating form one another.
- The water molecules have a decrease in entropy due to the attractions for the solute particles.

Dissolution of NaCl increases entropy

More randomness (more entropy)

©NCSSM 2002

Solutions

- The attractions of the water molecules to the solute particles increases as the charge of the ions increases.
- The solution process normally has a net increase in entropy.

Entropy

- We expect an increase in entropy for the following:
- 1. Gases are formed from liquids or solids.
- 2. Liquids or solutions are formed from solids.
- **3**. The number of gas molecules increases during a chemical reaction.

- Predict whether ΔS is positive or negative for each of the following processes, assuming each occurs at constant temperature:
- a. $H_2O_{(I)} \rightarrow H_2O_{(g)}$
- **b.** $Ag^{+}_{(aq)} + CI^{-}_{(aq)} \rightarrow AgCI_{(s)}$
- c. $4Fe_{(s)} 3O_{2(g)} \rightarrow 2Fe_2O_{3(s)}$
- d. $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$

Practice Exercise

- Indicate whether each of the following processes produces an increase or decrease in the entropy of the system:
- a. $CO_{2(s)} \rightarrow CO_{2(g)}$
- **b.** $CaO_{(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)}$
- c. $HCI_{(g)} + NH_{3(g)} \rightarrow NH_4CI_{(s)}$
- d. $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$

- Choose the sample of matter that has greater entropy in each pair, and explain your choice:
- a. $1 \mod \text{NaCl}_{(s)}$ or $1 \mod \text{HCl}_{(g)}$ at 25° C.

b. 2 mol $HCl_{(g)}$ or 1 mol $HCl_{(g)}$ at 25°C.

c. $1 \mod HCl_{(g)}$ or $1 \mod Ar_{(g)}$ at 298K.

Practice Exercise

- Choose the substance with the greater entropy in each case:
- a. 1 mol $H_{2(g)}$ at STP or 1 mol $H_{2(g)}$ at 100°C and 0.5 atm.
- **b.** $1 \mod H_2O_{(s)}$ at 0°C or 1 mol $H_2O_{(l)}$ at 25°C.
- c. $1 \mod H_{2(g)}$ at STP or $1 \mod SO_{2(g)}$ at STP
- d. $1 \mod N_2O_{4(g)}$ at STP or $2 \mod NO_{2(g)}$ at STP.

Third Law of Thermodynamics

- The third law of thermodynamics states that the entropy of a pure crystalline substance at absolute zero is zero.
- Entropy increases as a substance is heated, so $\Delta S_{solid} < \Delta S_{liquid} < \Delta S_{gas}$.

Section 19.4 – Entropy Changes in Chemical Reactions

 The molar entropy values of substances in their standard states are known as standard molar entropies and are denoted S°. The standard state for any substance is defined as the pure substance at 1 atm pressure and 298K.

Molar Entropies

- Molar entropies for elements are not zero like ΔH .
- The molar entropies are greater for gases than for liquids and solids.
- Molar entropies generally increase with increasing molar mass.
- Molar entropies generally increase with an increasing number of atoms in the formula of a substance.

Molar Entropy

 $\Delta S^{o} = \Sigma S^{o}_{(\text{products})} - \Sigma S^{o}_{(\text{reactants})}$

• Calculate ΔS° for the synthesis of ammonia from $N_{2(g)}$ and $H_{2(g)}$ at 298K:

 $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$

Practice Exercise

• Calculate the standard entropy change, ΔS° , for the following reaction at 298K:

 $AI_2O_{3(s)} + 2H_{2(g)} \rightarrow 2AI_{(s)} + 3H_2O_{(g)}$

Entropy and the Surroundings

• For an isothermal process, the entropy change is

$$\Delta S_{surr} = -q_{sys}$$
T

• For a reaction at constant pressure, entropy is $\Delta S_{surr} = -\Delta H_{sys}$

Section 19.5 – Gibbs Free Energy

- Spontaneous processes that decrease entropy are always exothermic.
- Spontaneity involves both enthalpy and entropy.
- Gibbs free energy is an equation used to determine spontaneity:

 $\Delta G = \Delta H - T\Delta S$

Gibbs Free Energy

- If temperature and pressure are constant then the sign of ΔG means the following:
- 1. If ΔG is negative, the reaction is spontaneous.
- 2. If ΔG is positive, the reaction is nonspontaneous, but the reverse is spontaneous.
- 3. If ΔG is zero, the reaction is at equilibrium.

- Calculate the standard free energy change for the formation of $NO_{(g)}$ from $N_{2(g)}$ and $O_{2(g)}$ at 298K:

 $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$

given that $\Delta H^{\circ} = 180.7$ kJ and $\Delta S^{\circ} = 24.7$ J/K. IS the reaction spontaneous under these circumstances?

Practice Exercise

• A particular reaction has $\Delta H^{\circ} = 24.6$ kJ and $\Delta S^{\circ} = 132$ J/K at 298K. Calculate ΔG° . Is the reaction spontaneous under these conditions?

Standard Free Energy of Formation

- The standard free energy of formation is the free energy associated with the formation of a substance at standard conditions.
- For solutions, standard state is 1M.

 $\Delta G^{\circ} = \Sigma \Delta G_{f^{\circ}}(\text{products}) - \Sigma \Delta G_{f^{\circ}}(\text{reactants})$

a. Calculate the standard free-energy change for the following reaction at 298K:

 $P_{4(g)} + 6Cl_{2(g)} \rightarrow 4PCl_{3(g)}$

b. What is the ΔG° for the reverse of the above reaction?

Practice Exercise

- Calculate the $\Delta G^{\rm o}$ at 298K for the combustion of methane:

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$$

a. Without using data from Appendix C, predict whether ΔG° for this reaction is more negative or less negative than ΔH° .

$$C_{3}H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_{2}O_{(I)}$$
$$\Delta H^{o} = -2220 \text{kJ}$$

Practice Exercise

• Consider the combustion of propane to form $CO_{2(g)}$ and $H_2O_{(g)}$ at 298K:

 $C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)}$

Would you expect ΔG° to be more negative or less negative than ΔH° ?

Section 19.6 – Free Energy and Temperature

Effect of Temperature on the Spontaneity of Reactions

ΔH	ΔS	-T∆S	ΔG	S or NS
-	+	-	-	S
+	-	+	+	NS
-	-	+	+ or -	S at low T
+	+	-	+ or -	S at high T

 The Haber process for the production of ammonia involves the equilibrium

$$N_{2(g)} + 3H_{2(g)} \leftrightarrow 2NH_{3(g)}$$

- Assume that ΔH° and ΔS° for this reaction do not change with temperature.
- a. Predict the direction in which ΔG° for this reaction changes with increasing temperature?

Sample Exercise 19.9 con't

b. Calculate the values of ΔG° for the reaction at 25°C and 500°C.

Practice Exercise

a. Using standard enthalpies of formation and standard entropies, calculate ΔH° and ΔS° at 298K for the following reaction:

$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

b. Using the values obtained in part a, estimate ΔG° at 400K.

Section 19.7 – Free Energy and the Equilibrium Constant

• There is a relationship between ΔG and the reaction quotient.

$$\Delta G = \Delta G^{\circ} + RTInQ$$

 $R = 8.31 \text{ J/mol} \cdot \text{K}$

- As we saw in Section 11.5, the normal boiling point is the temperature at which a pure liquid is in equilibrium with its vapor at a pressure of 1 atm.
- a. Write the chemical equation that defines the normal boiling point of liquid carbon tetrachloride, CCl_{4(I)}.

Sample Exercise 19.10 con't

b. What is the value of ΔG° for the equilibrium in part a?

c. Estimate the normal boiling point of CCl₄.

Practice Exercise

Estimate the normal boiling, in K, for elemental bromine, Br_{2(I)}.

• Calculate the ΔG at 298K for a reaction mixture that consists of 1.0 atm N₂, 3.0 atm H₂, and 0.5 atm NH₃.

Gibbs Free Energy $\Delta G^{\circ} = -RTInK$ $K = e^{-\Delta Go/RT}$

The more negative ΔG° is, the larger the value for K. If ΔG° is positive, then K is less than one.

 Use standard free energies of formation to calculate the equilibrium constant, K, at 25°C for the reaction invovled in the Haber process:

$$N_{2(g)} + 3H_{2(g)} \leftrightarrow 2NH_{3(g)}$$

The standard free-energy change for this reaction was calculated in Smaple Exercise 19.9: $\Delta G^{\circ} = -33.3 \text{ kJ/mol}$.

Practice Exercise

- Calculate the standard free-energy change, $\Delta G^{\circ},$ and the equilibrium constant, K, at 298K for the reaction

$$H_{2(g)} + Br_{2(I)} \leftrightarrow 2HBr_{(g)}$$

Sample Integrative Exercise

Consider the simple salts NaCl_(s) and AgCl_(s). We will examine the equilibria in which these salts dissolve in water to form aqueous solutions of ions:

$$NaCl_{(s)} \leftrightarrow Na^{+}_{(aq)} + Cl^{-}_{(aq)}$$
$$AgCl_{(s)} \leftarrow Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$

a. Calculate the value of ΔG° at 298K for each of the preceding reactions.

Sample Integrative Exercise con't

b. The two values from part a are very different. Is this difference primarily due to the enthalpy term or the entropy term of the standard free-energy change?

c. Use the values of $\Delta G^{\rm o}$ to calculate the K_{sp} values for the two salts at 298K.

Sample Integrative Exercise con't

- d. Sodium chloride is considered a soluble salt, whereas silver chloride is considered insoluble.
 Are these descriptions consistent with the answers to part c?
- e. How will ∆G° for the solution process of these salts change with increasing T? What effect should this change has on the solubility of the salts?

THE END

