AP Chemistry Chapter 15 Jeopardy

Jennie L. Borders

Round 2 — Chapter 15

K	Q	Calculating Equilibrium Constants	Applications of K	Le Chatelier's Principle	Surprise
200	200	200	200	200	200
400	400	400	400	400	400
600	600	600	600	600	600
800	800	800	800	800	800
1000	1000	1000	1000	1000	1000

Write the equilibrium constant expression for the following reaction:

Write the equilibrium constant expression for the following reaction:

$$4HCI_{(aq)} + O_{2(g)} \leftarrow \rightarrow 2H_2O_{(I)} + 2CI_{2(g)}$$

$$K_c = [Cl_2]^2$$

 $[HCI]^4[O_2]$

For the reaction represented below, the value of the equilibrium constant, K_{eq}, is 240 at 25°C. From this information, correct deductions about the reaction at 25°C include which of the following?

$$Fe^{3+}_{(aq)} + SCN^{-}_{(aq)} \leftarrow \rightarrow Fe(SCN)^{2+}_{(aq)}$$

- I. The reaction is quite rapid.
- II. The product is favored over the reactants at equilibrium.

 III.The reaction is endothermic.
- d. I only
- e. II only
- f. I and II only
- g. II and III only
- h. I, II, and III

b

A 0.10 mol sample of each of the four species in the reaction represented below is injected into a rigid, previously evacuated 1.0 L container. Which of the following species will have the highest concentration when the system reaches equilibrium?

$$2 H_2S_{(g)} + CH_{4(g)} \longleftrightarrow CS_{2(g)} + 4 H_{2(g)}K_c = 3.4 \times 10^{-4}$$

 $a.H_2S_{(g)}$

 $b.CH_{4(g)}$

 $\overline{\mathsf{c.CS}_{2(g)}}$

 $d.H_{2(g)}$

8

Consider the equilibrium

$$N_2 + O_2 + Br_2 \leftarrow \rightarrow 2NOBr$$

Calculate the equilibrium constant K_p for this reaction, given the following information at 298K:

$$2NO + Br_2 \leftarrow \rightarrow 2NOBr K_c = 2.0$$

$$2NO \leftarrow \rightarrow N_2 + O_2 K_c = 2.1 \times 10^{30}$$

$$K_p = 3.89 \times 10^{-32}$$

If Q_c > K_c, how must the reaction proceed to reach equilibrium?

left

What is the difference between Q and K?

K uses equilibrium concentrations or partial pressures and Q uses concentrations or partial pressures at any time.

At a certain time, the partial pressure of the gases in the reaction mixture represented below had the values shown in the table below.

$$CO_{(g)} + 3 H_{2(g)} \leftarrow \rightarrow CH_{4(g)} + H_2O_{(g)}$$
 $K_p = 66 \text{ at } 500^{\circ}C$

Based on the information above, which of the following occurred as the reaction mixture moved toward equilibrium?

Pco	P _{H2}	Рсн4	P _{H2O}
0.02 atm	1.0 atm	0.4 atm	0.4 atm

- a. More $CH_{4(g)}$ was produced because the rate of the forward reaction was higher than the rate of the reverse reaction.
- b. More $H_{2(g)}$ was produced because the rate of the reverse reaction was higher than the rate of the forward reaction.
- c. More $CH_{4(g)}$ was produced because the total pressure of the $H_{2(g)}$ and the $CO_{(g)}$ combined was higher than that of the products; thus the reaction shifted to the side with he fewest number of moles of gas.
- d. More $H_{2(g)}$ was produced because the pressure of $CO_{(g)}$ was the least and the reaction shifted to the side with he smaller number of moles of gas.

- At 450°C, 2.0 moles each of H_{2(g)}, I_{2(g)}, and HI_(g) are combined in a 1.0 L rigid container. The value of K_c at 450°C is 50. Which of the following will occur as the system moves toward equilibrium?
- a.More $H_{2(g)}$ and $I_{2(g)}$ will form.
- b.More HI_(g) will form.
- c. The total pressure will decrease.
- d.No net reaction will occurs, because the number of molecules is the same on both sides of the equation.

 K_p for the equilibrium $N_{2(g)} + 3H_{2(g)} \leftarrow \rightarrow$ $2NH_{3(q)}$ is 4.51×10^{-5} at 450° C. Indicate whether the mixture is at equilibrium. If it is not at equilibrium, indicate the direction in which the reaction must shift to achieve equilibrium.

13 atm NH₃, 27 atm N₂, and 82 atm H₂

1.14 x 10⁻⁵ shifts to the right

Calculating Equilibrium Constants 200

An equilibrium mixture in a 2L vessel is found to contain 0.0406 mol CH₃OH, 0.170 mol CO, and 0.302 mol H₂ at 500K. Calculate K_c at this temperature.

$$CO_{(g)} + 2H_{2(g)} \longleftrightarrow CH_3OH_{(g)}$$

Calculating Equilibrium Constants 400

The equilibrium $NO_{(g)} + Cl_{2(g)} \leftarrow \rightarrow$ NoCl_(q) is established at 500K. An equilibrium mixture of the three gases has partial pressures of 0.095 atm NO, 0.171 atm Cl₂, and 0.28 atm NOCI. Calculate Kp for this reaction

Calculating Equilibrium Constants 600

A flask contains 1.5 atm N₂O₄ and 1 atm NO₂ and the following equilibrium is achieved N₂O_{4(g)} \leftrightarrow 2NO_{2(g)}. After equilibrium is reached, the partial pressure of NO₂ is 0.512 atm. Calculate the value of Kp for this reaction.

0.1503

Calculating Equilibrium Constants 800

A mixture of 0.2 mol CO₂, 0.1 mol H₂, and 0.16 mol H₂O is placed in a 2L vessel. The following equilibrium is established: $CO_{2(g)} + H_{2(g)} \leftarrow \rightarrow$ $CO_{(g)} + H_2O_{(g)}$. At equilibrium P_{H2O} = 3.51 atm. Calculate Kp for the reaction at 500K.

0.11

Calculating Equilibrium Constants 1000

A mixture of 1.374g H₂ and 70.31g Br₂ is heated in a 2L vessel at 700K. These substances react as follows: $H_{2(g)} + Br_{2(g)} \leftarrow \rightarrow 2HBr_{(g)}$. At equilibrium the vessel is found to contain 0.566g of H₂. Calculate K_c. (keep 4 decimal places)

If P_{N2O4} is 1.33 atm when the system is at equilibrium at 70°C, what is P_{NO2}?

$$N_2O_{4(g)} \leftarrow \rightarrow 2 NO_{2(g)}K_p = 3.0 at 70^{\circ}C$$
Colorless Brown

- >0.44 atm
- >2.0 atm
- >2.3 atm
- >4.0 atm

0.162M

At 900K the following reaction has $K_p =$ $0.345: 2SO_{2(g)} + O_{2(g)} \leftarrow \rightarrow 2SO_{3(g)}$. In an equilibrium mixture the partial pressures of SO₂ is 0.135 atm and O₂ is 0.455 atm. What is the equilibrium partial pressure of SO₃ in the mixture?

0.054 atm

At 373K, $K_p = 0.416$ for the equilibrium $2NOBr_{(g)} \leftarrow \rightarrow 2NO_{(g)} + Br_{2(g)}$. If the pressures of $NOBr_{(g)}$ and $NO_{(g)}$ are equal, what is the equilibrium pressure of $Br_{2(g)}$?

0.416 atm

At 218°C, $K_c = 1.2 \times 10^{-4}$ for the equilibrium $NH_4HS_{(s)} \leftarrow \rightarrow NH_{3(g)} +$ H₂S_(g). Calculate the equilibrium concentrations of NH₃ and H₂S if a sample of solid NH4HS is placed in a closed vessel and decomposes until equilibrium is reached.

 $[NH_3] = 0.011M, [H_2S] = 0.011M$

Which of the following best predicts how the partial pressures of the reacting species will be affected if a small amount of Ar_(g) is added to the equilibrium mixture at constant volume?

$$N_2O_{4(g)} \longleftrightarrow 2 NO_{2(g)} K_p = 3.0 at 70^{\circ}C$$

Colorless Brown

- a. P_{NO2} will decrease and P_{N2O4} will increase.
- b.P_{NO2} will increase and P_{N2O4} will decrease.
- \triangleright Both P_{NO2} and P_{N2O4} will decrease.
- ➤ No change will take place.

Consider $4NH_{3(g)} + O_{2(g)} \leftarrow \rightarrow 4NO_{(g)}$ $+6H_2O_{(g)}$, $\Delta H = -904.4$ kJ. How does increasing [NH₃] affect the yield of NO at equilibrium?

Equilibrium shifts to the right, so [NO] increases.

Consider $4NH_{3(g)} + O_{2(g)} \leftarrow \rightarrow 4NO_{(g)}$ $+6H_2O_{(g)}$, $\Delta H = -904.4kJ$. How does decreasing $[O_2]$ affect the yield of NO at equilibrium?

Equilibrium shifts to the left, so [NO] decreases.

Consider $4NH_{3(g)} + O_{2(g)} \leftarrow \rightarrow 4NO_{(g)}$ $+6H_2O_{(q)}$, $\Delta H = -904.4$ kJ. How does decreasing the volume of the container in which the reaction occurs affect the yield of NO at equilibrium?

Equilibrium shifts to the left, so [NO] decreses.

Consider $4NH_{3(g)} + O_{2(g)} \leftarrow \rightarrow 4NO_{(g)}$ $+6H_2O_{(g)}$, $\Delta H = -904.4$ kJ. How does adding a catalyst affect the yield of NO at equilibrium?

No shift in equilibrium, so no change in [NO].

Which of the following statements best explains why the contents of the tube containing the equilibrium mixture turned a lighter color when the tube was placed into an ice bath?

$$N_2O_{4(g)} \longleftrightarrow 2 NO_{2(g)} K_p = 3.0 at 70^{\circ}C$$

Colorless Brown

- a. The forward reaction is exothermic.
- b. The forward reaction is endothermic.
- c. The ice bath lowered the activation energy.
- The ice bath raised the activation energy.

Based on the information below, what is the value of K_{eq} for the reaction represented below?

$$ICl_{(g)} \leftarrow \rightarrow \frac{1}{2} I_{2(g)} + \frac{1}{2} Cl_{2(g)} K_{eq} = 0.1$$

 $I_{2(g)} + Cl_{2(g)} \leftarrow \rightarrow 2 ICl_{(g)} K_{eq} = ?$

- a. 0.01
- b. 10
- c. 20
- d. 100

Consider the following equilibrium: $2H_{2(g)} + S_{2(g)} \leftarrow \rightarrow 2H_2S_{(g)} K_c =$ $1.08 \times 10^7 \text{ at } 700^{\circ}\text{C. Does the}$ equilibrium mixture contain mostly H_2 and S_2 or mostly H_2S ?

The value of the equilibrium constant for the reaction represented below if 2.3 x 10¹¹.

$$Ge_{(g)} + 2 Cl_{2(g)} \leftarrow \rightarrow GeCl_{4(g)}$$

What is the value of the equilibrium constant for the following reaction?

$$2 \operatorname{GeCl}_{4(g)} \longleftrightarrow 2 \operatorname{Ge}_{(g)} + 4 \operatorname{Cl}_{2(g)}$$

- a. 1.9×10^{-23}
- b. 4.3×10^{-12}
- c. 2.3×10^{11}
- d. 5.3×10^{22}

A mixture of CH₄ and H₂O is passed over a nickel catalyst at 1000K. The emerging gas is collected in a 5L flask and is found to contain 8.62g CO, 2.6g H₂, 43g CH₄, and 48.4g H₂O. Assuming that equilibrium has been reached, calculate K_c for the reaction.

 3.74×10^{-3}

At 80°C, $K_c = 1.87 \times 10^{-3}$ for the reaction $PH_3BCI_{3(s)} \leftarrow \rightarrow PH_{3(g)} +$ BCl_{3(q)}. Calculate the equilibrium concentrations of PH3 and BCl3 if a solid sample of PH3BCl3 is placed in a closed vessel and decomposes until equilibrium is reached.

 $[PH_3] = 0.043M, [BCl_3] = 0.043M$