Fall Semester

Weeks	Dates	Sections	Unit	Important Dates
1 – 8	8/8 – 9/30	1.7, H.1, 9.1 – 9.7	Polar Curves, Parametric Equations, Vectors & the Geometry of Space	Half-day, August 24 Labor Day, Monday Sept. 5 GHSGT Writing Test, Sept. 27
9	10/3 – 10/7	Review & Exam		Mid-semester 10/5
10 – 14	10/10 – 11/11	8.1 – 8.9	Infinite Sequences & Series	Fall Break, Oct. 10 – 11 PSAT, 10/12 Teacher PD (no school), Nov. 8
15 – 16	11/14 – 12/9	10.1 – 10.5	Calculus with Polar, Parametric, & Vector Functions	Thanksgiving, 11/21 – 25
17 – 18	12/12 – 12/29	Review & Exam		Economics EOCT, 12/10? End of Semester, 12/20

Spring Semester

Weeks	Dates	Chapters	Unit	Important Dates
1 – 3	1/4 – 1/27	Ch. 3 & 4	Applied Projects	MLK Day, No School, Jan. 17
4-5	1/30 – 2/10	Ch. 5	Techniques of Integration	Winter Break, Feb. 17 – 20
6 – 8	2/13 – 3/2	Ch. 6	Applications of Integration	
9	3/5 – 3/9	Revie	w & Exam	
10	3/12 – 3/16	8.3 & misc.	Analyzing Series using Integrals	Early Release Day, 3/9 Mid-semester, 3/12 GHSGT, Mar. 19 – 23
11 – 12	3/19 – 3/30	7.2, 7.5, 7.6	Differential Equations	Spring Break, Apr. 2 – 6
13 – 15	4/9 – 4/27	F	Review	EOCTs, Apr. 23 – Apr. 27
16	4/30 – 5/4	Fin	al Exam	EOCTs, Apr. 30 – May 4
17	5/7 – 5/11	AP	Exam, 5/9	
18 – 19	5/14 – 5/22	P	rojects	End Semester, Tuesday May 22

<u>Unit</u>: Polar Curves, Parametric Equations, Vectors & the Geometry of Space

Objectives:

- (1) Describe curves in 2 and 3 dimensions using parametric equations, converting between Cartesian and parametric representations when possible.
- (2) Sketch parametric curves in 2 dimensions.
- (3) Use parametric curves to describe inverse relations.
- (4) Describe position in 3 dimensional space, including notation and the distance formula.
- (5) Explore 3 dimensional surfaces using Cartesian equations.
- (6) Describe vectors geometrically and algebraically in terms of magnitude, direction, and components.
- (7) Manipulate vectors in both component form and in terms of unit vectors.
- (8) Compute and interpret the dot product of two vectors algebraically and geometrically.
- (9) Compute and interpret the cross product of two vectors algebraically and geometrically.
- (10) Describe points and curves in 2 dimensions using polar coordinates and equations, converting between Cartesian, parametric, and polar representations when possible.
- (11) Explore the cylindrical and spherical coordinates systems for 3 dimensions.

Weeks 1-2

<u>Day 1</u>: Tuesday, 8/9/11

Course introduction and classroom procedures.

Q&A for summer packet.

Summer packet due next class period.

Introduce Writing Project 1: The Company Picnic (due Friday, 8/19)

Day 2: Thursday, 8/11/11

1.7 Group Work 1: Name That Parameterization

1.7 Group Work 2: How Many Ways Can You Trace That Curve?

Objectives: (1) & (2)

Day 3: Monday, 8/15/11

1.7 Group Work 3: Lissajous Figures

Lab Project: Running Circles Around Circles (p. 82), due Tuesday, 8/23/11.

Objectives: (1) & (2)

Day 4: Wednesday, 8/17/11

Lab Project: Running Circles Around Circles (p. 82), due Tuesday, 8/23/11.

Objectives: (1) & (2)

<u>Day 5</u>: Friday, 8/19/11

Quiz 2 (Parametric Equations & Curves)

Continue working on Lab Project which is due Tuesday, 8/23/11.

Writing Project 1 due today by 5 p.m via email.