Things to Remember from Geometry

If two parallel lines are cut by a transversal, then $\frac{1/2}{3/4}$ $\frac{5/6}{7/8}$ Corresponding $\angle s$ are \cong . $\angle 1 \cong \angle 5, \angle 2 \cong \angle 6,$ $\angle 3 \cong \angle 7, \angle 4 \cong \angle 8$ Alternate Interior $\angle s$ are \cong	Special Quadrilaterals Parallelogram: • Opposite sides & = • opposite ∠s ≅ • consecutive ∠s supplementary • diagonals bisect each other Rectangle: • All characteristics of parallelograms • 4 right ∠s • ≅ diagonals Rhombus: • All characteristics of parallelograms • 4 z sides • Diagonals ⊥ • Diagonals bisect ∠s Square: • All characteristics of rectangles,& rhombi	Other QuadrilateralsTrapezoid: •Only one set sides (bases)Isosceles Trapezoid: • \cong legs • base \angle s \cong • diagonals \cong • opposite \angle s supplementaryKite: • 2 pairs of adjacent \cong sides • diagonal from the vertex \angle s is \bot bisector of the other diagonal & \angle bisector for the vertex \angle s •Non-vertex \angle s \cong	Polygon Quadrilateral Trapezoid Parallelogram Rectangle Square	
$\angle 3 \cong \angle 6, \angle 4 \cong \angle 5$			Polygons	
Alternate Exterior ∠s are ≅. ∠1≅∠8, ∠2≅∠7 Consecutive ∠s are supplementary. m∠3+m∠5=180, m∠4+m∠6=180		Slope Formula $m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope-Intercept Form y = mx + b Point-Slope Formula $(y - y_1) = m(x - x_1)$	Interior $\angle s$: Sum of interior $\angle s =$ 180(n - 2) Each interior \angle (regular) = $\underline{180(n-2)}$ n	Exterior ∠s: Sum of exterior ∠s = 360° Each exterior ∠ (regular) = 360 ÷ n
Triangle Inequalities: •Sum of the lengths of any 2 sides of a Δ is > the length of the 3rd side. •Longest side of a Δ is opposite the largest ∠.	Classifying Triangles By Sides: Scalene – no congruent sides Isosceles – 2 congruent sides Equilateral – 3 congruent sides By Angles:	Proving Triangles Congruent SSS SAS ASA AAS HL (right triangles only) NO donkey theorem (SSA) or car insurance (AAA) *CPCTC (use after the triangles are ≅).	Points of ConcurrencyCentroid: Medians(from vertex to midpoint)Center of Gravity/ Balance PointIncenter: Angle BisectorsEqual distance from all sidesCircumcenter: Perpendicular BisectorsEqual distance from all verticesOrthocenter: Outside the Δ).	Naming Polygons triangle – 3 sides quadrilateral – 4 sides pentagon – 5 sides hexagon – 6 sides heptagon – 7 sides
Pythagorean Theorem $a^2 + b^2 = c^2$ • a and b are legs • c is always the hypotenuse (side opposite the right angle) Converse: If the sides of a triangle satisfy $a^2 + b^2 = c^2$, then the Δ is a right triangle.	Acute – all acute angles Right – one right angle Obtuse – one obtuse angle	Proving Similar Triangles AA, SSS, SAS *Corresponding sides of similar triangles are proportional.		octagon – 8 sides decagon – 10 sides dodecagon – 12 sides
	Distance Formula: $\sqrt{\left(\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2\right)}$ Midpoint Formula $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	Regular: all angles are ≅ and all sides are ≅. Equiangular: all angles are ≅. Equilateral: all sides are ≅.		Concave (a place to hide) Convex no diagonals lying outside

Things to Remember from Geometry

