

Warm Up

Lesson Presentation

Lesson Quiz

Holt McDougal Geometry

Objectives

Identify tangents, secants, and chords.

Use properties of tangents to solve problems.

interior of a circleconcentric circles exterior of a circletangent circles chordcommon tangent secant tangent of a circle point of tangency congruent circles

The **interior of a circle** is the set of all points inside the circle. The **exterior of a circle** is the set of all points outside the circle.

Lines and Segments That Intersect Circles

TERM	DIAGRAM
A chord is a segment whose endpoints lie on a circle.	A
A secant is a line that intersects a circle at two points.	Chord B
A tangent is a line in the same plane as a circle that intersects it at exactly one point.	Secant
The point where the tangent and a circle intersect is called the point of tangency .	Tangent C Point of tangency

Example 1: Identifying Lines and Segments That Intersect Circles

Identify each line or segment that intersects $\odot L$.

chords: \overline{JM} and \overline{KM} secant: \overline{JM} tangent: mdiameter: \overline{KM} radii: \overline{LK} , \overline{LJ} , and \overline{LM}

Check It Out! Example 1

Identify each line or segment that intersects $\odot P$.

chords: \overline{QR} and \overline{ST} secant: \overline{ST} tangent: \overline{TV} diameter: \overline{ST} radii: \overline{PQ} , \overline{PT} , and \overline{PS}

Pairs of Circles		
TERM	DIAGRAM	
Two circles are <mark>congruent circles</mark> if and only if they have congruent radii.		
	$ \underbrace{\odot A}_{AC} \cong \underbrace{\odot B}_{BD} \text{ if } \overline{AC} \cong \overline{BD}. \\ \overline{AC} \cong \overline{BD} \text{ if } \odot A \cong \odot B. $	
Concentric circles are coplanar circles with the same center.		
Two coplanar circles that intersect at exactly one point are called tangent circles.		
	Internally Externally tangent circles	

Holt McDougal Geometry

Example 2: Identifying Tangents of Circles

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.

radius of $\odot R$: 2 Center is (-2, -2). Point on \odot is (-2,0). Distance between the 2 points is 2.

radius of $\odot S$: 1.5

Center is (-2, 1.5). Point on \odot is (-2,0). Distance between the 2 points is 1.5.

Example 2 Continued

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.

point of tangency: (-2, 0)

Point where the •s and tangent line intersect

equation of tangent line: y = 0Horizontal line through (-2,0)

Check It Out! Example 2

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.

radius of $\odot C$: 1

Center is (2, -2). Point on \odot is (2, -1). Distance between the 2 points is 1.

radius of $\odot D$: 3

Center is (2, 2). Point on \odot is (2, -1). Distance between the 2 points is 3.

Check It Out! Example 2 Continued

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.

Pt. of tangency: (2, -1)

Point where the •s and tangent line intersect

eqn. of tangent line: y = -1Horizontal line through (2,-1)

A **<u>common tangent</u>** is a line that is tangent to two circles.

Lines ℓ and m are common external tangents to $\bigcirc A$ and $\bigcirc B$.

A **<u>common tangent</u>** is a line that is tangent to two circles.

Lines p and q are common internal tangents to $\bigcirc A$ and $\bigcirc B$.

Holt McDougal Geometry

Copyright © by Holt Mc Dougal. All Rights Reserved.

Example 4: Using Properties of Tangents

\overline{HK} and \overline{HG} are tangent to $\odot F$. Find HG.

$HK = HG \bigcirc f \\ \rightarrow f$	egments tangent to from same ext. point segments \cong . G 4 + 2a H F 5a - 32
5 <i>a</i> – 32 = 4 + 2 <i>a</i>	Substitute 5a – 32 for HK and 4 + 2a for HG.
3 <i>a</i> – 32 = 4	Subtract 2a from both sides.
3 <i>a</i> = 36	Add 32 to both sides.
<i>a</i> = 12	Divide both sides by 3.
HG = 4 + 2(12)	Substitute 12 for a.
= 28	Simplify.
Holt McDougal Geometry	Converget @ by Holt Mc Dougal All Pights Pasaruad

Check It Out! Example 4a

\overline{RS} and \overline{RT} are tangent to $\odot Q$. Find RS.

RS = RT S = RT

 $\frac{x}{4} = x - 6.3$

x = 8.4

 $RS = \frac{8.4}{2}$

segments
$$\cong$$
.
Substitute $\frac{x}{4}$ for RS and x – 6.3 for RT.

x = 4x - 25.2 Multiply both sides by 4.

- -3x = -25.2 Subtract 4x from both sides.
 - Divide both sides by –3.
 - Substitute 8.4 for x.

Holt McDougal Geometry

Check It Out! Example 4b

\overline{RS} and \overline{RT} are tangent to $\odot Q$. Find RS.

- RS = RT
- n+3=2n-1
- 2 segments tangent to \odot from same ext. point \rightarrow segments \cong .
 - Substitute n + 3 for RS and 2n 1 for RT.
- 4 = n Simplify.
- RS = 4 + 3 = 7 Substitute 4 for n. Simplify.

Holt McDougal Geometry

Lesson Quiz: Part I

1. Identify each line or segment that intersects $\odot Q$. chords ∇T and ∇R secant: \sqrt{T} tangent: s S diam.: WR

radii: QW and QR

Lesson Quiz: Part II

2. Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.

radius of $\odot C$: 3 radius of $\odot D$: 2 pt. of tangency: (3, 2) eqn. of tangent line: x = 3

Lesson Quiz: Part III

- 3. Mount Mitchell peaks at 6,684 feet. What is the distance from this peak to the horizon, rounded to the nearest mile?
 ≈ 101 mi
- **4.** \overline{FE} and \overline{FG} are tangent to $\odot F$. Find FG.

