

Holt McDougal Geometry

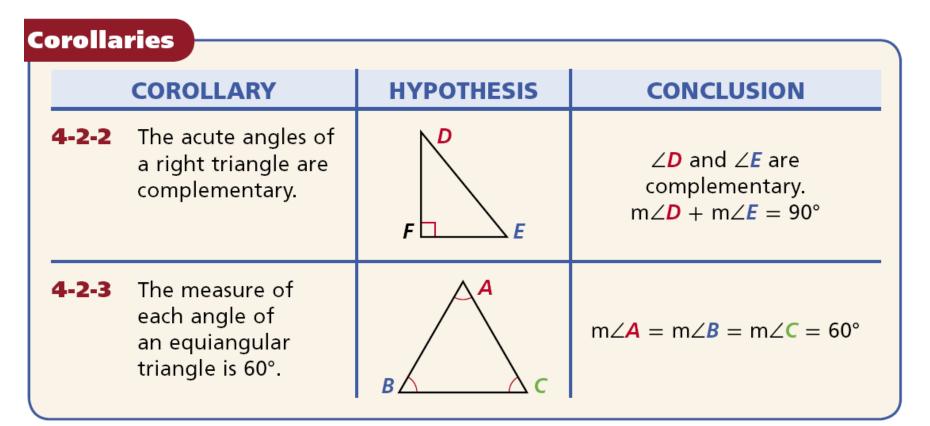
Angle Relationships in Triangles

Check It Out! Example 1

Use the diagram to find $m \angle MJK$.

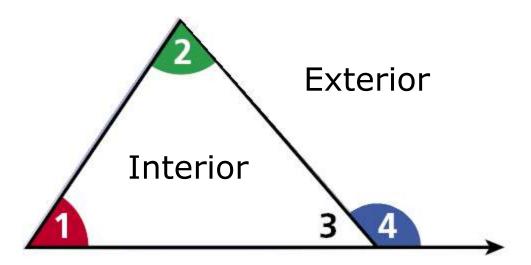
 $m \angle MJK + m \angle JKM + m \angle KMJ = 180^{\circ} \bigtriangleup Sum.$ Thm

m∠*MJK* + **104** + **44**= 180

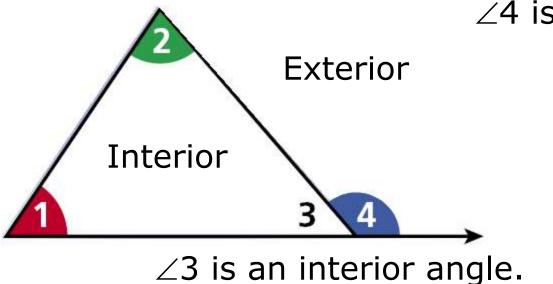

Substitute 104 for $m \angle JKM$ and 44 for $m \angle KMJ$.

 $m \angle MJK + 148 = 180$ Simplify.

 $m \angle MJK = 32^{\circ}$ Subtract 148 from both sides.

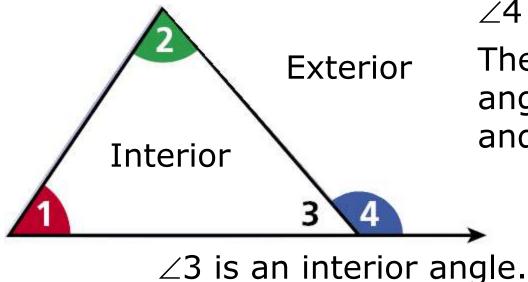

Holt McDougal Geometry

A **<u>corollary</u>** is a theorem whose proof follows directly from another theorem. Here are two corollaries to the Triangle Sum Theorem.



Holt McDougal Geometry

The **interior** is the set of all points inside the figure. The **exterior** is the set of all points outside the figure.


An **interior angle** is formed by two sides of a triangle. An **exterior angle** is formed by one side of the triangle and extension of an adjacent side.

 $\angle 4$ is an exterior angle.

Holt McDougal Geometry

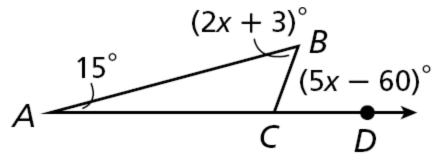
Each exterior angle has two remote interior angles. A <u>remote interior angle</u> is an interior angle that is not adjacent to the exterior angle.

 $\angle 4$ is an exterior angle. The remote interior angles of $\angle 4$ are $\angle 1$ and $\angle 2$.

Holt McDougal Geometry

Theorem 4-2-4 Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of its remote interior angles.


 $m \angle 4 = m \angle 1 + m \angle 2$

Holt McDougal Geometry

Angle Relationships in Triangles

Example 3: Applying the Exterior Angle Theorem

Find m∠*B*.

 $m \angle A + m \angle B = m \angle BCD$

Ext. ∠ *Thm.*

15 + 2x + 3 = 5x - 60

2x + 18 = 5x - 60

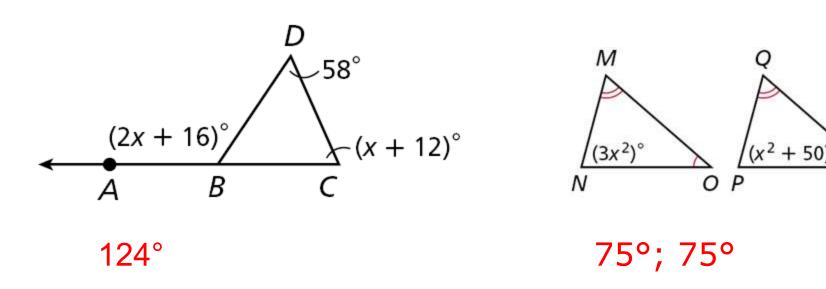
78 = 3x

Substitute 15 for $m \angle A$, 2x + 3 for $m \angle B$, and 5x - 60 for $m \angle BCD$.

Simplify. Subtract 2x and add 60 to both sides.

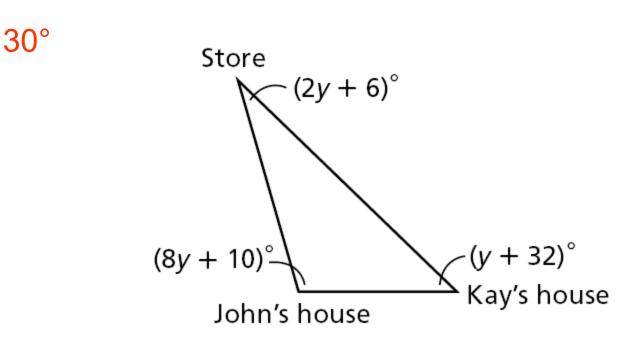
 $26 = x \qquad Divide by 3.$

 $m \angle B = 2x + 3 = 2(26) + 3 = 55^{\circ}$


Holt McDougal Geometry

Theorem 4-2-5 Third Angles Theorem			
THEOREM		HYPOTHESIS	CONCLUSION
If two angles of one triangle are congruent to two angles of another triangle, then the third pair of angles are congruent.		R T M	∠ <i>N</i> ≅ ∠ <i>T</i>

Lesson Quiz: Part I


1. The measure of one of the acute angles in a right triangle is $56\frac{2}{3}^{\circ}$. What is the measure of the other acute angle? $33\frac{1}{3}^{\circ}$

2. Find m $\angle ABD$. **3.** Find m $\angle N$ and $m \angle P$.

Lesson Quiz: Part II

4. The diagram is a map showing John's house, Kay's house, and the grocery store. What is the angle the two houses make with the store?

Holt McDougal Geometry