#### **Solutions Basics**

#### **16.2 Concentrations of Solutions**

# Molarity

- **Concentration** of a solution is a measure of the amount of solute that is dissolved in a given quantity of solvent.
  - Solute substance being dissolved
  - Solvent substance doing the dissolving
  - Lemonade solution, solute is lemon juice and sugar, solvent is water.
- **Dilute solution** is on that contains a small amount of solute
- Concentrated solution contains a large amount of solute
  - 1 g NaCl per 100 g H2O would be dilute when compared to 30 g NaCl per 100 g H2O (a concentrated solution)

# Molarity

- Molarity (M) is the number of moles of solute dissolved in one liter of solution
- To calculate the molarity of a solution, divide the moles of solute by the volume of the solution.

$$Molarity(M) = \frac{moles of solute}{liters of solution}$$

Molarity is also known as molar concentration

# **Molarity Example**

• A saline solution contains 0.95 g NaCl in exactly 100 mL of solution. What is the molarity of the solution?

Molarity(M) =

moles of solute liters of solution

Need moles of solute, so turn grams to moles  $0.95 \text{ g NaCl x} \frac{1 \text{ mol NaCl}}{58.44 \text{ g NaCl}} = 0.016 \text{ mol NaCl}$ 

Need liters of solution  $100 \text{ ml x} \underline{1 \text{ L}} = 0.100 \text{ L}$ 1000 mL

Molarity = 
$$\frac{0.016 \text{ mol NaCl}}{0.100 \text{ L}} = 0.16 \text{ M NaCl}$$

# **Molarity Example**

 A solution has a volume of 2.50 L and contains 159g NaCl. What is the molarity of the solution?

Molarity (M) =  $\frac{\text{moles of solute}}{\text{liters of solution}}$ 

Need moles of solute, so turn grams to moles  $\frac{0159 \text{ g NaCl x } 1 \text{ mol NaCl}}{58.44 \text{ g NaCl}} = 2.72 \text{ mol NaCl}$ Molarity =  $\frac{2.72 \text{ mol NaCl}}{2.50 \text{ L}}$  = 1.09 M NaCl

# **Molarity Example**

 What mass of NaCl is needed to make a 2.25 M NaCl solution with a volume of 500 mL?

```
Molarity(M) = \frac{moles of solute}{liters of solution}
```

Need liters of solution  $500 \text{ ml x} \frac{1 \text{ L}}{1000 \text{ mL}} = 0.500 \text{ L}$ 

Molarity x Liters = moles 2.25 M NaCl x 0.500 L = 1.13 mol NaCl

Turn mole to grams 1.13 mol NaCl x 58.44 g NaCl = 66.0 g NaCl1 mol L

## Molarity Practice (Chemical Formulas)

- 1. NaCl
- 2. Na<sub>2</sub>S
- 3. HI
- 4. Al(OH)₃
- 5.  $H_2SO_4$
- 6. Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>
- 7. NaCl
- 8. CaS

#### Molarity Practice (Final ANSWERS)

- 1. 0.78 M NaCl
- 2. 0.12 M Na<sub>2</sub>S
- 3. 153g HI
- 4. 0.189 mol Al(OH)<sub>3</sub>
- 5. 5.0 L of  $H_2SO_4$  solution
- 6. 3260 g Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>
- 7. 13.2 M NaCl
- 8. 2660 mL of CaS solution

#### Acids, Bases, and Salts

Chapter 19

## **19.1 Acid- Base Theories**

- Properties of Acids
  - Taste sour
  - React with metals to form H<sub>2</sub> gas
  - Will change the color of and acid-base indicator
  - Can be strong or weak electrolytes in aqueous solutions
- Properties of Bases
  - Taste bitter
  - feel slippery
  - Will change the color of and acid-base indicator
  - Can be strong or weak electrolytes in aqueous solutions

#### Examples

• Acid: citric acid



Base: milk of magnesia
 Magnesium hydroxide



## Lewis Acids and Bases

- Gilbert Lewis's theory of acids and bases was an extension of his concept of electron pairs
- This is the broadest acid/base definition used.
- Lewis acids accepts a pair of electrons
- Lewis bases donate a pair of electrons

#### **Arrhenius Acids and Bases**

- Svante Arrhenius in1887 posed a way of defining acids and bases
- <u>Arrhenius Acids</u>
  - Are hydrogen-containing compounds that ionize to yield hydrogen ions (H+)

 $HCI + H_2O \rightarrow H_3O^+ + CI^-$ 

 $NH_4^+ + H_2O \rightarrow H_3O^+ + NH_3$ 

#### **Types of acids**

<u>Monoprotic acids</u> are acids that contain one ionizable hydrogen.

Nitric acid: HNO<sub>3</sub>

• <u>Diprotice acids</u> are acids that contain two ionizable hydrogens.

Sulfuric acid: H<sub>2</sub>SO<sub>4</sub>

• <u>Triprotic acids</u> are acids that contain three ionizable hydrogens.

Phosphoric acid: H<sub>3</sub>PO<sub>4</sub>

<u>Arrhenius Bases</u>

 Are compounds that ionize to yield hydroxide ions (OH<sup>-</sup>) in aqueous solutions

 $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ 

#### $CH_3COO^- + H_2O \rightarrow CH_3COOH + OH^-$

## **Brønsted-Lowry Acids and Bases**

- In 1923 Johannes Brønsted and Thomas Lowry proposed a new definition
- Is a more comprehensive definition of acids and bases
- Brønsted-Lowry Acids
   Is a hydrogen-ion donor
- Brønsted-Lowry Bases

Is a hydrogen-ion acceptor

#### **Acid-Base Definitions**

| Туре           | Acid                      | Base                    |
|----------------|---------------------------|-------------------------|
| Arrhenius      | H⁺ producer               | OH⁻ producer            |
| Brønsted-Lowry | H <sup>+</sup> donor      | H <sup>+</sup> acceptor |
| Lewis          | Electron-pair<br>acceptor | Electron pair donor     |

#### **Conjugate Acids and Bases**

- <u>Conjugate acid</u> is the particle formed when a base gains a hydrogen ion.
- <u>Conjugate base is the particle formed when an acid</u> has donated a hydrogen ion.
- <u>Conjugate acid-base pair consists of two substance</u> related by the loss or gain of a single hydrogen ion.
- When a water molecule gains a hydrogen ion it becomes a positively charged <u>hydronium ion (H<sub>3</sub>O<sup>+</sup>).</u>
- When water molecule looses a hydrognet ion it becomes the negativly charged hydroxide ion (OH<sup>-1</sup>)

 $NH_3 + H_2O \rightarrow NH^{+4} + OH^-$ Base + Acid  $\rightarrow$  Conjugate + Conjugate Acid Base

 A substance that can act as both an acid and a base is said to be <u>amphoteric</u>. (example: Water)

#### **Conjugate acids and base**

- What are the conjugate bases of these acids?
- a) HClO<sub>4</sub> b) HSO<sub>4</sub><sup>-</sup> c) HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> d) H<sub>2</sub>S
- a)  $CIO_4^-$  b)  $SO_4^{2-}c) C_2H_3O_2^- d) HS^-$

What are the conjugate acids of these bases
a) SO<sub>4</sub><sup>2-</sup> b) NH<sub>3</sub> c) F<sup>-</sup> d) NO<sub>3</sub><sup>-</sup>
a) HSO<sub>4</sub><sup>-</sup> b) NH<sub>4</sub><sup>+</sup> c) HF d) HNO<sub>3</sub>

## 19.1 Review

- 1. What are the properties of acids and bases?
- 2. How did Arrhenius define and acid and base?
- 3. How are acids and bases defined by the Brønsted-Lowry theory?
- 4. What is the Lewis-theory of acids and bases?
- 5. Identify the following as monoprotic, diprotic or triprotic:

a)  $H_2CO_3$  b)  $H_3PO_4$  c) HCl d)  $H_2SO_4$ 

# The pH Concept

- The **pH** of a solution is the negative logarithm of the hydrogen-ion concentration.
- pH = log [H<sup>+</sup>]
- For example a neutral solution has [H<sup>+</sup>] of 1.0 x 10 <sup>-7</sup> so the pH is calculated pH = -log (1.0 x 10 <sup>-7</sup>) = 7.00
- The **pOH** of a solution is the negative logarithm of the hydroxide concentration.
- $pOH = -\log[OH^{-1}]$

#### pH and Significant Figures

- A [H<sup>+</sup>] of 6.0 x 10<sup>-5</sup> has two significant figures
- The pH is recorded with two decimal places 4.22

- A [H<sup>+</sup>] of 6. x 10 <sup>-5</sup> has one significant figures
- The pH is recorded with one decimal places 4.2

Calculating pH practice 1. [H<sup>+</sup>] of 1.0 x 10<sup>-11</sup>  $pH = -log (1.0 \times 10^{-11}) = 11.00$ 2. [H<sup>+</sup>] of 6.0 x 10<sup>-5</sup>  $pH = -log (6.0 \times 10^{-5}) = 4.22$ 3. [H<sup>+</sup>] of 4.0 x 10<sup>-3</sup>  $pH = -log (4.0 \times 10^{-3}) = 2.40$ 4. [H<sup>+</sup>] of 9.0 x 10<sup>-9</sup>  $pH = -log (9.0 \times 10^{-9}) = 8.05$ 

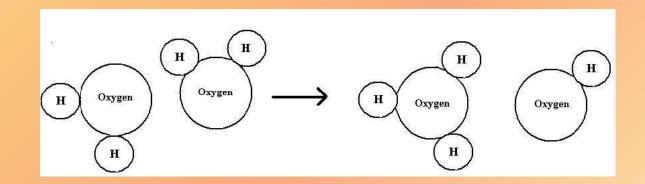
#### Calculating pOH

•  $pOH = -\log[OH^{-}]$ 1. [OH<sup>-</sup>] of 1.0 x 10 <sup>-3</sup>  $pOH = -log (1.0 \times 10^{-3}) = 3.00$ 2. [OH<sup>-</sup>] of 6.0 x 10<sup>-7</sup>  $pOH = -log (6.0 \times 10^{-7}) = 6.22$ 3. [OH<sup>-</sup>] of 2.0 x 10<sup>-4</sup>  $pOH = -log (2.0 \times 10^{-4}) = 3.70$ 4. [OH<sup>-</sup>] of 7.2 x 10 <sup>-9</sup>  $pOH = -log(7.2 \times 10^{-9}) = .14$ 

- A solution in which [H<sup>+</sup>] is greater than 1.0 x 10<sup>-7</sup> has a pH less than 7.0 and is acidic.
- The pH of a neutral solution is 7.0
- A solution in which [H<sup>+</sup>] is less than 1.0 x 10<sup>-7</sup>
   has a pH greater than 7.0 and is basic.
- A simple relationship between pH and pOH allows you to calculate the other if one is known.

pH + pOH = 14

Calculating concentration from pH/pOH


- Using pH to find [H<sup>+</sup>] since pH= -log [H<sup>+</sup>] Then [H<sup>+</sup>] =  $10^{(-pH)}$
- Calculate the [H+] for the solution pH= 3.00 [H<sup>+</sup>]= 10<sup>(-pH)</sup> [H<sup>+</sup>] = 10<sup>(-3.00)</sup> = 1.0 x 10<sup>-3</sup> M H<sup>+</sup> 0.00100 M H<sup>+</sup>
- Using pH to find  $[OH^{-1}]$  since pOH= -log  $[OH^{-1}]$ Then  $[OH^{-1}] = 10^{(-pOH)}$
- Calculate the [OH<sup>-1</sup>] for the solution
   pOH= 7.67
   [OH<sup>-1</sup>]= 10<sup>(-pOH)</sup> [OH<sup>-1</sup>] = 10<sup>(-7.67)</sup> = 2.14 x 10<sup>-8</sup>

## pH to pOH

- If [H<sup>+1</sup>] is 2.5 x 10<sup>-4</sup> what is the pOH pH = -log [2.5 x 10<sup>-4</sup>] = 3.60 pOH = 14 - 3.60 = 10.40
- If the [OH-1] is 6.8 x 10<sup>-12</sup> what is the pH
   pOH = -log [6.8 x 10<sup>-12</sup>] = 11.17
   pH = 14 11.17 = 2.83

# 19.2 Hydrogen lons and Acidity

- The reaction in which water molecules produce ions is called the <u>self-ionization</u> of water
- $H_2O(I) \implies H^+(aq) + OH^-(aq)$
- $2H_2O(I) = H^3O^+(aq) + OH^-(aq)$



- Self-ionization of water occurs to a very small extent, in pure water at 25°C.
- Any aqueous solution in which the [H<sup>+</sup>] and [OH<sup>-</sup>] are equal is called a <u>neutral solution</u>.
- In aqueous solution [H<sup>+</sup>] x [OH<sup>-</sup>] = 1.0 x 10<sup>-14</sup>
  - This is called the <u>ion-product constant for water</u>  $(K_w)$ .
  - The concentrations may change but the product always equals 1.0 x 10<sup>-14</sup> for water.

## **Acidic Solutions**

- An <u>acidic solution</u> is one in which the [H<sup>+</sup>] is greater than the [OH<sup>-</sup>].
- The [H<sup>+</sup>] of an acidic solution is greater than 1.0 x 10<sup>-7</sup> M

$$HCl_{(g)} \xrightarrow{H_2O} H^+_{(aq)} + Cl^-_{(aq)}$$

## **Basic Solution**

- An basic solution is one in which the [H<sup>+</sup>] is less than the [OH<sup>-</sup>].
- The [H<sup>+</sup>] of an acidic solution is less than 1.0 x 10<sup>-7</sup> M

## NaOH $\xrightarrow{H_2O}$ Na<sup>+</sup> + OH<sup>-</sup>

 Basic solutions are also known as <u>alkaline</u> <u>solutions</u>. What is the [OH<sup>-</sup>] if the [H<sup>+</sup>] is 1.0 x 10 <sup>-3</sup>?
 remember: [OH<sup>-</sup>] x [H<sup>+</sup>] = 1.0 x 10 <sup>-14</sup>

 $[OH^{-}] = 1.0 \times 10^{-14} / 1.0 \times 10^{-3} = 1.0 \times 10^{-11}$ 

- What is the [H<sup>+</sup>] if the [OH<sup>-</sup>] is 1.0 x 10 <sup>-8</sup> ?
   [H<sup>+</sup>] = 1.0 x 10 <sup>-14</sup>/ 1.0 x 10 <sup>-8</sup> = 1.0 x 10 <sup>-6</sup>
- Classify each solution as acidic, basic, or neutral:
- a)  $[H^+] = 6.0 \times 10^{-10}$
- b)  $[OH^{-}] = 3.0 \times 10^{-4}$
- c)  $[H^+] = 6.0 \times 10^{-7}$
- d)  $[H^+] = 1.0 \times 10^{-7}$

- What is the [H<sup>+</sup>] of a solution with a pOH of 3.12? Is it acidic, basic, or neutral?
- pH= 14- pOH pH= 14 3.12 = 10.88[H<sup>+</sup>]=  $10^{(-pH)}$  [H<sup>+</sup>] =  $10^{(-10.88)} = 1.3 \times 10^{-11}$ it is a Basic solution
- What is the [H<sup>+</sup>] of a solution with a pOH of 9.18? Is it acidic, basic, or neutral?
- pH= 14- pOH pH= 14 9.18 = 4.82[H<sup>+</sup>]=  $10^{(-pH)}$  [H<sup>+</sup>] =  $10^{(-4.82)} = 1.5 \times 10^{-5}$ it is an acidic solution

## Concentration to pH and back

- Possible equations
- $pH = -log [H^{+1}]$  $pOH = -log [OH^{-1}]$ pH + pOH = 14 $[H^{+1}] = 10^{-pH}$  $[OH^{-1}] = 10^{-pOH}$  $[H^{+1}]x[OH^{-1}] = 10^{-14}$
- If the [OH<sup>-1</sup>] = 4.68 x 10<sup>-3</sup> determine the pOH, pH, [H<sup>+1</sup>] and if acidic/basic/neutral.
- $\circ$  pOH = -log [4.68 x 10<sup>-3</sup>] = 2.33
- *pH* = 14-2.33 = 11.67
- $\circ$  [H<sup>+1</sup>] =10<sup>-11.67</sup> = 2.14 x 10<sup>-12</sup>
- Substance is Basic because pH is 11.67

#### 19.3 Strengths of Acids and Bases

• Strong acids are completely ionized in aqueous solutions.

 $HCl_{(aq)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + Cl^-_{(aq)}$  100% ionized

• Weak acids only slightly ionize in aqueous solutions.

 $CH_{3}COOH_{(aq)} + H_{2}O_{(l)} \Longrightarrow H_{3}O^{+}_{(aq)} + CH_{3}COO^{-}$  (aq)Less than 0.4% ionized

# Six strong acids!!

- HCl hydrochloric acid
- HBr hydrobromic acid
- HI hydroiodic acid
- HNO<sub>3</sub> nitric acid
- H<sub>2</sub>SO<sub>4</sub> sulfuric acid
- HClO<sub>4</sub> perchloric acid

#### All other acids are considered weak acids!!

#### **Acid Dissociation Constant**

 An acid dissociation constant (K<sub>a</sub>) is the ratio of the concentration of the dissociated form of an acid to the concentration of the undissociated form.

$$K_a = [H_3O^+] \times [dissocated acid] = [H^+][A^-]$$
[acid] [HA]

- Weak acids have small K<sub>a</sub> values.
- The stronger an acid is the larger is its K<sub>a</sub> value.

# **Base Dissociation Constant**

• Strong bases dissociate completely into metal ions and hydroxide ions in aqueous solution.

 Weak bases react with water to form the hydroxide ion and the conjugate acid of the base.

 $\mathbf{NH}_{3(aq)} + \mathbf{H}_{2}\mathbf{O}_{(I)} \implies \mathbf{NH}_{4}^{+}_{(aq)} + \mathbf{OH}_{(aq)}^{-}$ 

# **Eight strong bases**

- LiOH lithium hydroxide
- NaOH sodium hydroxide
- KOH potassium hydroxide
- RbOH rubidium hydroxide
- CsOH cesium hydroxide
- Ca(OH)<sub>2</sub> calcium hydroxide
- Sr(OH)<sub>2</sub> strontium hydroxide
- Ba(OH)<sub>2</sub> barium hydroxide

#### **Base Dissociation Constant**

 The base dissociation constant (K<sub>b</sub>) is the ratio of the concentrations of the conjugate acid time the concentration of the hydroxide ion to the concentration of the base.

# Calculation a Dissociation Constant Only for weak acids

- At equilibrium [H<sup>+</sup>]=[A<sup>-</sup>] and [HA] = M [H<sup>+</sup>]
- M is the molarity of the solution
- A 0.1500 M solution of acid is only partially ionized. The [H<sup>+</sup>] is determined to be 2.56 x  $10^{-3}$ . What is the K<sub>a</sub> of this acid solution?

 $[H^+]=[A^-]= 2.56 \times 10^{-3}$ 

 $[HA] = 0.1500M - 2.56 \times 10^{-3} = 0.1474$ 

 $K_a = (2.56 \times 10^{-3}) \times (2.56 \times 10^{-3}) = 4.446 \times 10^{-5}$ 

0.1474

$$K_a = [H^+][A^-]$$
  $[H^+]=[A^-]$   $[HA] = M - [H^+]$   
[HA]

 Calculate the K<sub>a</sub> of a 0.250 M weak acid solution if the [H<sup>+</sup>] equals 9.45 x 10<sup>-4</sup>.
 [H<sup>+</sup>]=[A<sup>-</sup>]= 9.45 x 10<sup>-4</sup>
 [HA]= 0.2500 - 9.45 x 10<sup>-4</sup> = 0.249

 $K_{a} = [H^{+}][A^{-}] = [9.45 \times 10^{-4}] [9.45 \times 10^{-4}] = 3.59 \times 10^{-6}$ [HA] 0.249

#### **Strong Acids or Bases**

- [H<sup>+</sup>] for strong acids equals molarity of acid
   [H<sup>+</sup>]= M of acid
- [OH<sup>-</sup>] for strong bases equals molarity of base
   [OH-]= M of base
- What is the [OH<sup>-</sup>] and [H<sup>+</sup>] for the following solutions
- a. 0.275 M HCl
- b. 0.500 M NaOH
- c. 0.200 M HNO<sub>3</sub>
- d. 0.375 M Ba(OH)<sub>2</sub>

 $[H^+] \times [OH^-] = 1.0 \times 10^{-14}$ Remember

a. 0.275 M HC  $[H^+] = 0.275 [OH^-] = 3.64 \times 10^{-14}$ 

b. 0.500 M NaOH  $[H^+] = 2.00 \times 10^{-14}$  $[OH^{-}] = 0.500$ 

c. 0.200 M HNO<sub>3</sub>  $[OH^{-}] = 5.00 \times 10^{-14}$ [H<sup>+</sup>]=0.200

d. 0.375 M Ba(OH)<sub>2</sub>  $[OH^{-}] = 0.375$ 

 $[H^+] = 2.67 \times 10^{-14}$ 

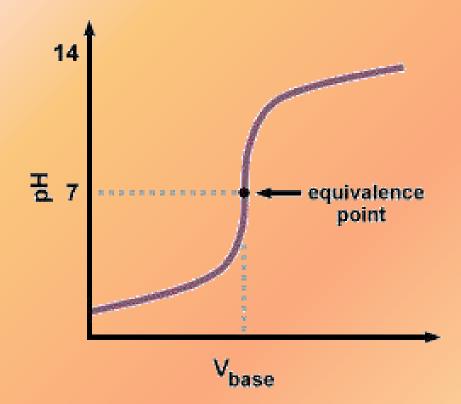
#### **19.4 Neutralization Reactions**

• When you mix a strong acid with a strong base a neutral solution results.

HCl  $_{(aq)}$  + NaOH  $_{(aq)}$   $\rightarrow$  NaCl  $_{(aq)}$  + H<sub>2</sub>O  $_{(l)}$ 2 HBr  $_{(aq)}$  + Ba(OH)<sub>2 (aq)</sub>  $\rightarrow$  BaBr<sub>2(aq)</sub> + 2 H<sub>2</sub>O  $_{(l)}$ 

 A <u>neutralization reaction</u> is where an acid and a base react to form a salt and water

### Titration


- Acids and bases do not always react in a 1:1 ratio
- The <u>equivalence point</u> is when the number of moles of hydrogen ions equals the number of moles of hydroxide ions.
- How many moles of hydrochloric acid are required to neutralized 0.50 moles of barium hydroxide ?

 $2\text{HCl}_{(aq)} + \text{Ba}(OH)_{2 (aq)} \rightarrow \text{BaCl}_{2 (aq)} + 2\text{H}_2O_{(I)}$ 

 $0.50 \text{ mol Ba}(OH)_{2 (aq)} \times \frac{2 \text{ mol HCl}}{1 \text{ mol Ba}(OH)_2} = 1.0 \text{ mol HCl}$ 

- The process of adding a known amount of a solution of known concentration to determine the concentration of another solution is called <u>titration.</u>
- The solution of known concentration is called the <u>standard solution</u>.
- We use a buret to add the standard solution.
- The solution is added until the indicator changes colors.
- The point at which the indicator changes colors is the <u>end point</u> of the titration.

# Titration of a strong acid with a strong base



#### Titration Calculations – 1<sup>st</sup> type of problem

- Determine the volume of 2.1 M sodium hydroxide needed to titrate 435 mL of 1.75 M sulfuric acid.
- 1<sup>st</sup> : write a balanced chemical equation
- 2<sup>nd</sup> : determine the number of moles of reactant (sulfuric acid) available
- 3<sup>rd</sup>: use stoichiometry to calculate the number of moles of reactant (sodium hydroxide) needed
- 4<sup>th</sup> : use molarity to determine the number of mL needed to complete the neutralization.

 Determine the volume of 2.1 M sodium hydroxide needed to titrate 435 mL of 1.75 M sulfuric acid.

- 1<sup>st</sup>: 2NaOH + H<sub>2</sub>SO<sub>4</sub> → Na<sub>2</sub>SO<sub>4</sub> + 2H<sub>2</sub>O
- 2<sup>nd</sup>: 0.435L x [1.75 mol/1L]= 0.76125 mol H<sub>2</sub>SO<sub>4</sub>
- $3^{rd}$ : 0.76125mol H<sub>2</sub>SO<sub>4</sub> x <u>2mol NaOH</u> = 1.5225 mol NaOH 1 mol H<sub>2</sub>SO<sub>4</sub>
- 4<sup>th</sup> : 1.5225 mol NaOH x <u>1L</u> = 0.725 L = 725 ml 2.1 mol

 Determine the volume of 3.3 M hydrochloric acid needed to titrate 355 mL of 2.50 M magnesium hydroxide.

```
1<sup>st</sup>: 2HCl + Mg(OH)<sub>2</sub> → MgCl<sub>2</sub> +2H<sub>2</sub>O

2<sup>nd</sup>: 0.355L x [2.50 mol/1L]= 0.8875 mol Mg(OH)<sub>2</sub>

3<sup>rd</sup>: 0.8875mol Mg(OH)<sub>2</sub> x <u>2mol HCl</u> = 1.775 mol HCL

1 mol Mg(OH)<sub>2</sub>

4<sup>th</sup>: 1.775mol HCl x <u>1L</u> = 0.538 L = 538 ml HCl

3.3 mol
```

Titration Calculations – 2<sup>nd</sup> type of problem

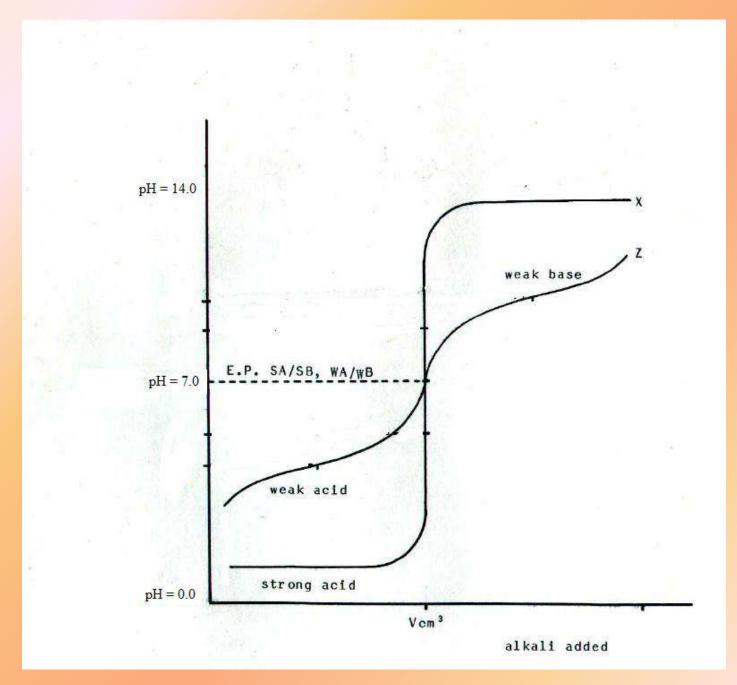
 Titration reveals that 22.5 ml of 2.0 M nitric acid are required to neutralize 20 ml of calcium hydroxide. What is the molarity of the calcium hydroxide?

- $1^{st}: 2HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + 2H_2O$
- 2<sup>nd</sup> : 0.0225L x [2.0 mol/1L]= 0.045 mol HNO<sub>3</sub>
- $3^{rd}$ : 0.045mol HNO<sub>3</sub> x <u>1mol Ca(OH)<sub>2</sub></u> = 0.0225 mol Ca(OH)<sub>2</sub> 2 mol HNO<sub>3</sub>
- 4<sup>th</sup> : <u>0.0225mol Ca(OH)<sub>2</sub></u> = 1.125 M Ca(OH)<sub>2</sub> 0.020 L

 Titration reveals that 11.2 ml of 3.5 M barium hydroxide are required to neutralize 50 ml of perchloric acid. What is the molarity of the perchloric acid?

- 1<sup>st</sup>: 2HClO<sub>4</sub> + Ba(OH)<sub>2</sub> → Ba(ClO<sub>4</sub>)<sub>2</sub> +2H<sub>2</sub>O
- 2<sup>nd</sup>: 0.0112L x [3.5 mol/1L]= 0.0392 mol Ba(OH)<sub>2</sub>
- $3^{rd}$ : 0.0392mol Ba(OH)<sub>2</sub> x <u>2 mol HClO<sub>4</sub></u> = 0.0784 mol HClO<sub>4</sub> 1 mol Ba(OH)<sub>2</sub>
- 4<sup>th</sup> : <u>0.0784 mol HClO<sub>4</sub></u> = 1.56 M HClO<sub>4</sub>

0.050 L


# 19.5

- <u>Salt hydrolysis</u> the cations or anions of a dissociated salt remove hydrogen ions from or donate hydrogen ions to the water.
- In general, salts that produce acidic solutions contain positive ions that release protons to water
- Salts that produce basic solutions contain negative ions that attract protons from water.

#### **19.5 Salts in Solution**

- A salt consists of an anion from an acid and a cation from a base. It forms as the result of a neutralization reaction.
- A <u>buffer</u> is a solution in which the pH remains relatively constant when small amount of acid or base are added.
- A buffer is a solution of a weak acid and one of its salts, or a solution of a weak base and one of its salts.
- Buffers are able to resist drastic changes in pH.

- The <u>buffering capacity</u> is the amount of acid or base that can be added to a buffer solution before a significant change in pH occurs.
- Buffer systems are crucial in maintaining human blood pH within a narrow range.

