AP Calculus AB

Welcome!

Let's start with the ...

Foerster Door Exercise

Always label your axes

A door with a hydraulic closer opens and closes. At time t seconds, it forms an angle of d(t) degrees with the wall, at

door

d degrees

1. Sketch a reasonable graph with t as the independent variable and d(t) as the dependent variable. Be sure to label your axes.

Any graph that starts at the origin, reaches a $\max \le 180^\circ$, and returns to the *x*-axis is acceptable.

2. Let $d(t) = 200t(2^{-t})$. Plot d(t) on your calculator.

Angle Measure *d* with the Wall, in Degrees

3. Make a table of values of d(t) for each second from t = 0 to t = 9. Use 4 decimal places if necessary.

t	0	1	2	3	4	5	6	7	8	9
d(t)	0	100	100	75	50	31.25	18.75	10.9375	6.25	3.5156

4. At t = 1 second, does the door appear to be opening or closing? Opening

How can you tell? $\underline{d(t)}$ is still increasing.

5. Find the average rate of change of d with $d(t) = 200t(2^{-t})$ for each of the following intervals:

Calculator Tip: Use TBLSET (2ND WINDOW) to set your table to Ask so you can type in *x*-values and get *y*-values.

- 6. Based on the calculations above, is the door opening or closing at t = 1 second? Explain. It is opening because the instantaneous rate of change (slope) at that point approaches a positive number.
- 7. The instantaneous rate of change of d(t) with respect to t is the limit of the average rates as the length of the time interval approaches 0. Make a conjecture about the approximate instantaneous rate of change at t = 1. Conjecture: Instantaneous rate $\approx \le$ any number slightly larger than 30.6807529 degrees/sec \ge . (Exact answer is about 30.68528194 deg/sec.)

The instantaneous rate of change is called the derivative of d(t) with respect to t. From the graph with window [0, 9] by [0, 180]: (2nd TRACE) CALC, 6: dy/dx, x = 1.

Review: Finding the equation of a line if you know the slope and a point on the line.

One way to do this is to substitute the slope for m and the point's x- and y-values for x and y in the slope - y-intercept equation y = mx + b, then solve for b and back substitute. However, in Calculus, you might find it more convenient to use the point - slope form of the equation of a line:

$$y - y_1 = m(x - x_1)$$

It works because $m = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y - y_1}{x - x_1}$.

Multiply both sides by $x - x_1$ to get point - slope form.

The derivative is the slope of a line tangent to the curve at *t*.

8. Use your estimate to find an equation of the line tangent to the curve at t = 1. Add that to your graph in # 2.

Let's review what we did when we found the average rates of change for each of the intervals:

(Window: [0, 9] by [0, 180])

We kept shrinking the interval till we found the instantaneous rate of change (slope) of the tangent line to the curve at t = 1.

What concepts did you review in this process?

- angle measures
- increasing (and decreasing) intervals
- average rates of change (slopes)
- y-intercepts
- finding the equation of a line
- graphing
- asymptotes

Let's summarize!

What is an instantaneous rate of change?

What is a limit?

What is a derivative?