Warm Up

Use the point-slope form of each equation to identify a point the line passes through and the slope of the line.

Lesson 💼

Main n

Back

Next >

1.
$$y - 3 = -\frac{1}{7}(x - 9)$$
 (9, 3), $-\frac{1}{7}$
2. $y + 2 = \frac{2}{3}(x - 5)$ (5, -2), $\frac{2}{3}$
3. $y - 9 = -2(x + 4)$ (-4, 9), -2
4. $y - 5 = -\frac{1}{4}(x + 7)$ (-7, 5), $-\frac{1}{4}$

Essential Question

How can you identify a direct variation?

Standard

MCC8.EE.5: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.

Back

Next >

Lesson 💼

A <u>direct variation</u> is a linear function that can be written as y = kx, where k is a nonzero constant called the <u>constant of variation</u>.

Reading Math

The constant of variation is also called the constant of proportionality.

Lesson 💼

Main n

Next >

Back

<u>Name:</u>

What is a Direct Variation?

- The equation that represents a direct variation is _____, where k is the _____(this is the factor that changes the quantities.)
- Let's say you know the coordinate (2,4). This is the same as saying that x is _____ and y is _____. Substitute your coordinate into the direct variation equation to solve for the constant of proportionality.

- A direct variation equation can be represented by a proportion: A direct proportion $\frac{y_1}{x_1} = \frac{y_2}{x_2}$ can represent 2 different coordinates (x_1, y_1) and (x_2, y_2)
- A direct variation graph _____ passes through the _____ (0,0).

- Let's say you know the coordinate (2,4). This is the same as saying that x is _____ and y is _____. Substitute your coordinate into the direct variation equation to solve for the constant of proportionality.

• A direct variation equation can be represented by a proportion: A direct proportion $\frac{y_1}{x_1} = \frac{y_2}{x_2}$ can represent 2 different coordinates (x_1, y_1) and (x_2, y_2)

A direct variation graph _____ passes through the _____ (0,0).

Direct Variation In Context

A direct variation in context reveals how an increase in 1 variable will result in an ______ in another variable. It can also reveal how a decrease in 1 variable will result in a ______ in another variable. A direct variation can represent an increase in 1 variable and a decrease in another variable.

- The more time I drive at a constant rate, the more miles I go.
- If I increase a recipe for more people, the more of an ingredient I need.
- The more hours I work, the more money I make.
- The more CD's I purchase, the more money it costs.
- If you buy half as much cheese at the deli, you pay half as much.

Increase in one variable results in decrease in another. Ex.

-The more time you spend working out, the less you weigh.

-The less time you work out, the more you weigh.

Direct Variation Proportions

A direct variation proportion has ratios that are equivalent. A coordinate (x,y) is actually the ratio of $\frac{y}{x}$. A direct proportion $\frac{y_1}{x_1} = \frac{y_2}{x_2}$ can represent 2 different coordinates (x_1, y_1) and (x_2, y_2) or 2 different coordinates can represent a direct proportion. Write 1-2 examples in your foldable.

For example:

 $\frac{3}{12} = \frac{2}{8}$ is the same as the coordinates (12,3), (8,2) $\frac{9}{3} = \frac{15}{5}$ is the same as the coordinates (3,9), (5,15)

	Tonowing Tubles That	represent airect variation.	
X	У	Y divided by $X = k$ (constant)	
1	2		
2	4	What is the constant for each of the tables?	
3	6		
X 10 6 4	У 5 3 2	Table 2:	

Х	У	
1	3	_

Explain why each of the tables are not

V	V	
X	У	
10	5	
6	3	
4	2	

NOT Direct Variation Tables

Look at the following tables that do not represent a direct variation. Find what all of the tables have in common.

Х	У	
1	3	
2	4	
3	5	

X	У	
10	6	
20	4	
30	2	

4

Direct Variation Equations

Explain why each of the tables are not direct variation.

Table 1:

Table 2:

🖣 Page 4 of 8 🔹 🕨

ᆛ닠 View

The following are examples of direct variation equations. The number in front of the x variable is called the constant of proportionality or variation. Y=kx Why are the following equations direct variation? y = xY = y = 2x y = -2.5xNON-Direct Variation Equations The following are non-examples of direct variation equations. Why are the following NOT equations direct variation? y = <u>2</u>x-2 y = x+3y = 2 y = 2.5x - 4Video **D** ...

Additional Example 1A: Determining Whether a Data Set Varies Directly

Determine whether the data set shows direct variation.

Adam	ı's Gro	wth C	hart	
Age (mo)	3	6	9	12
Length (in.)	22	24	25	27

Next >

Back

Lesson 💼

Additional Example 1A Continued

Make a graph that shows the relationship between Adam's age and his length. The graph is not linear.

Next >

Back

Lesson 💼

Additional Example 1A Continued

You can also compare ratios to see if a direct variation occurs.

Lesson 💼

Main n

Back

Next >

The relationship of the data is not a direct variation.

Additional Example 1B: Determining Whether a Data Set Varies Directly

Determine whether the data set shows direct variation.

Distance	Trave	led by	Train	
Time (min)	10	20	30	40
Distance (mi.)	25	50	75	100

Lesson 🔒

Main 🕇

Next >

< Back

Additional Example 1B Continued

Make a graph that shows the relationship between the number of minutes and the distance the train travels.

Plot the points.

The points lie in a straight line.

(0, 0) is included.

Lesson n

Main n

Back

Next >

Additional Example 1B Continued

You can also compare ratios to see if a direct variation occurs.

$$\frac{25}{10} = \frac{50}{20} = \frac{75}{30} = \frac{100}{40}$$
 Compare ratios.

The ratios are proportional. The relationship is a direct variation.

Lesson 💼

Main 💼

Next >

Back

Additional Example 2A: Finding Equations of Direct Variation

Find each equation of direct variation, given that y varies directly with x.

y is 54 when *x* is 6

- y = kx y varies directly with x.
- $54 = k \cdot 6$ Substitute for x and y.
 - 9 = k Solve for k.
 - y = 9x Substitute 9 for k in the original equation.

Lesson 💼

Main 🖬

Back

Next >

Additional Example 2B: Finding Equations of Direct Variation

- *x* is 12 when *y* is 15
 - y = kx y varies directly with x.
 - $15 = k \cdot 12$ Substitute for x and y.
 - $\frac{5}{4} = k$ $y = \frac{5}{4}x$

Solve for k. Substitute $\frac{5}{4}$ for k in the original equation.

Back

Next >

Lesson 💼

Check It Out: Example 2A

Find each equation of direct variation, given that y varies directly with x.

y is 24 when *x* is 4

- y = kx y varies directly with x.
- $24 = k \cdot 4$ Substitute for x and y.
 - 6 = k Solve for k.
 - y = 6x

Substitute 6 for k in the original equation.

Back

Next >

Lesson 💼

Main 🕇

Check It Out: Example 2B

x is 28 when *y* is 14

- y = kx y varies directly with x.
- $14 = k \cdot 28$ Substitute for x and y.
 - $\frac{1}{2} = k$ $y = \frac{1}{2}x$

Solve for k. Substitute $\frac{1}{2}$ for k in the original equation.

Back

Next >

Lesson 💼

Going Deeper

Essential question: How can you identify a direct variation?

A direct variation is a linear function that has an equation of the form y = kx, in which k is a fixed nonzero constant called the constant of variation.

MCC8.EE.5

EXAMPLE Identifying Direct Variations

Does each equation represent a direct variation between x and y?

$$A -3x + y = 0$$

B -3x + y = 2

Write the equation in y = kx form, if possible. Write the equation in y = kx form, if possible.

Make a table of values. Then find the ratios of y to x.

Graph the equation.

Do the ratios of y to x form a constant?

Is the graph a straight line passing through the origin?

Does -3x + y = 0 represent a direct variation between x and y?

The constant of variation is _____.

Make a table of values. Then find the ratios of y to x.

x	-1	1	2	3
У				

Graph the equation.

 $\operatorname{Can} -3x + y = 0$ be written as y = kx? $\operatorname{Can} -3x + y = 2$ be written as y = kx?

Do the ratios of y to x form a constant?

Is the graph a straight line passing through the origin? _____

Does -3x + y = 2 represent a direct variation between x and y? _____

Pg. 225

ughton			
O HOI	Can - 3x + y = 0 be written as y = kx?	Can - 3x + y = 2 be written as y = kx?	-
	Do the ratios of <i>y</i> to <i>x</i> form a constant?	Do the ratios of y to x form a constant?	-
	Is the graph a straight line passing through the origin?	Is the graph a straight line passing through the origin?	
	Does $-3x + y = 0$ represent a direct variation between <i>x</i> and <i>y</i> ?	Does $-3x + y = 2$ represent a direct variation between <i>x</i> and <i>y</i> ?	
	The constant of variation is		
	Module 9 22	5 Lessor	15

REFLECT

1a. Does the equation 2.5x - y = 0 represent a direct variation between x and y? If so, what is the constant of variation? What is the slope of the line?

1b. Is the equation for finding the perimeter of a square *P* given the length of a side *s* an example of direct variation? Explain.

PRACTICE

Tell whether the function represented by each table is or is not a direct variation. Explain your reasoning.

1.	x	1	2	3	4
	у	-3	-6	-9	-12

2.	x	1	2	3	4
	у	4	5	6	7

el	ACTICE
	I whether the function represented by each table is or is not a direct
	riation. Explain your reasoning.
	x 1 2 3 4 2. x 1 2 3 4
	y -3 -6 -9 -12 y 4 5 6 7
	Write an equation for the graph What is the value of y when $x = 6$? The circumference of a circle varies directly with the length of its diameter.
3	· · · · · · · · · · · · · · · · · · ·
	How would you describe the relationship between circumference <i>C</i> and diameter <i>d</i> ? What equation can you write to show this relationship?