Warm Up Problem of the Day Lesson Presentation Lesson Quizzes

< Back

Lesson 💼

Main 🖬

Next >

© HOLT McDOUGAL, All Rights Reserved

Warm Up

1. Regina walked 9 miles in 3 hours. How many miles did she walk per hour?

3 mi per hour

2. To make 3 bowls of trail mix, Sandra needs 15 ounces of nuts. How many ounces of nuts does she need for 1 bowl of trail mix?

Lesson n

Main n

Back

Next >

5 oz

Problem of the Day

Paul has earned \$60 from his paper route. Each day he earns \$3.50 more. How many days will it take for Paul's earnings to top \$100?

Lesson 💼

Main n

Back

Next >

12 days

Learn to identify, write, and graph an equation of direct variation.

Lesson 💼

Main 🖬

Back

Vocabulary

Lesson 💼

Main 🕇

Next >

< Back

direct variation constant of variation

Direct variation is a linear relationship between two variable that can be written in the form y = kx or k

Lesson 💼

Main n

Back

Next >

 $=\frac{y}{x}$, where $k \neq 0$. The fixed number k in a direct

variation equation is the constant of variation.

Reading Math

You can read direct variation as "y varies directly as x" or "y is directly proportional to x" or "y varies with x."

Lesson 💼

Main n

Back

Additional Example 1A: Identifying a Direct Variation from an Equation

- Tell whether each equation represents a direct variation. If so, identify the constant of variation.
- **y + 8 = x** y + 8 = x - 8 = - 8

y = x - 8

Solve the equation for y. Subtract 8 from both sides.

Back

Next >

Lesson 🕇

Main n

The equation is not in the form y = kx, so y + 8 = x is not a direct variation.

Additional Example 1B: Identifying a Direct Variation from an Equation

- Tell whether each equation represents a direct variation. If so, identify the constant of variation.
- 3y = 2x

 $\frac{3y}{3} = \frac{2x}{3}$

Solve the equation for y. Divide both sides by 3.

Back

Next >

Lesson 💼

Main n

 $y = \frac{2}{3}x$ Write $\frac{2x}{3}$ as $\frac{2}{3}x$.

The equation is in the form y = kx, so the original equation 3y = 2x is a direct variation.

Check It Out: Example 1A

Tell whether each equation represents a direct variation. If so, identify the constant of variation.

- y + 3 = 3x
 - y + 3 = 3x- 3 - 3

Solve the equation for y. Subtract 3 from both sides.

Back

Next >

Lesson 💼

Main n

y = 3x - 3

The equation is not in the form y = kx, so y + 3 = 3x is not a direct variation.

Check It Out: Example 1B

Tell whether each equation represents a direct variation. If so, identify the constant of variation.

$$4y = 3x$$

 $\frac{4y}{4} = \frac{3x}{4}$

Solve the equation for y. Divide both sides by 4.

Back

Next >

Lesson 💼

Main n

$$y = \frac{3}{4}x$$
 Write $\frac{3x}{4}$ as $\frac{3}{4}x$.

The equation is in the form y = kx, so the original equation 4y = 3x is a direct variation.

Additional Example 2A: Identifying a Direct Variation from a Table

Tell whether each set of data represents a direct variation. If so, identify the constant of variation and then write the direct variation equation.

Price (c)	69	99	129
Weight (oz)	2	3	4

Find $\frac{y}{x}$ for each ordered pair.

$$\frac{y}{x} = \frac{2}{69}$$
 $\frac{y}{x} = \frac{3}{99} = \frac{1}{33}$ $\frac{y}{x} = \frac{4}{129}$

Lesson 💼

Main n

Back

Next >

k is not the same for each ordered pair.

The data does not represent a direct variation.

Helpful Hint

In a direct variation where k is positive, when x increases, y also increases; when x decreases, y also decreases.

Lesson 💼

Main n

Back

Additional Example 2B: Identifying a Direct Variation from a Table

Tell whether each set of data represents a direct variation. If so, identify the constant of variation and then write the direct variation equation.

Inches	1	2	5
Centimeters	2.54	5.08	12.70

Find
$$\frac{y}{x}$$
 for each ordered pair.
 $\frac{y}{x} = \frac{2.54}{1} = 2.54 \frac{y}{x} = \frac{5.08}{2} = 2.54 \frac{y}{x} = \frac{12.7}{5} = 2.54$
 $k = 2.54$ for each ordered pair.
The data represent a direct variation where $k = 2.54$.
The equation is $y = 2.54x$

Next >

Back

Lesson 💼

Main n

Check It Out: Example 2A

Tell whether each set of data represents a direct variation. If so, identify the constant of variation and then write the direct variation equation.

Price (c)	5	10	15
Weight (lb)	2	3	4

Find $\frac{y}{x}$ for each ordered pair. $\frac{y}{x} = \frac{2}{5}$ $\frac{y}{x} = \frac{3}{10}$ $\frac{y}{x} = \frac{4}{15}$

k is not the same for each ordered pair.

The data does not represent a direct variation.

Lesson 💼

Main n

Back

Check It Out: Example 2B

Tell whether each set of data represents a direct variation. If so, identify the constant of variation and then write the direct variation equation.

Meters	3	4	5
Miles	9	12	15

Find $\frac{y}{x}$ for each ordered pair. $\frac{y}{x} = \frac{9}{3} = 3$ $\frac{y}{x} = \frac{12}{4} = 3$ $\frac{y}{x} = \frac{15}{5} = 3$ k = 3 for each ordered pair. The data represent a direct variation where k = 3. The equation is y = 3x

Lesson 💼

Main n

Next >

Back

Additional Example 3: Identifying a Direct Variation from a Graph

Tell whether each graph represents a direct variation. If so, identify the constant of variation and then write the direct variation equation.

The graph is a line through (0, 0). This is a direct variation. The Slope of the line is $\frac{1}{2}$, so $k = -\frac{1}{2}$. The equation is $y = -\frac{1}{2}x$.

Back

Next >

Lesson n

Main n

Helpful Hint

In a direct variation, the slope, *k*, represents a constant rate of change.

Lesson 💼

Main n

Next >

Back

Check It Out: Example 3

Tell whether each graph represents a direct variation. If so, identify the constant of variation and then write the direct variation equation. $\uparrow v$

The line does not pass through (0, 0). This is not a direct variation.

Back

Next >

Lesson n

Main n

Additional Example 4A: *Application*

A truck travels at a speed of 55 miles per hour.

Write a direct variation equation for the distance y the truck travels in x hours.

distance=55 miles per hourtimesnumber of hoursUse the formula y = kx. k = 55y = 55•xy = 55x

Lesson 💼

Main n

Back

Additional Example 4B: *Application*

A truck travels at a speed of 55 miles per hour.

Graph the data.

Make a table. Since time cannot be negative, use nonnegative number for I.

X	<i>y</i> = 55x	У	(<i>x, y</i>)
0	y = 55 <mark>(0)</mark>	0	(0, 0)
1	y = 55 <mark>(1)</mark>	55	(1, 55)
2	y = 55 <mark>(2)</mark>	110	(2, 110)

Lesson 💼

Main n

Next >

Back

Additional Example 4 Continued

Use the ordered pairs top plot the points on a coordinate plane. Connect the points in a straight line. Label the axes.

Check

y = 55x is in slope-intercept form with m = 55and b = 0. The graph shows a slope of 55 and a y-intercept of 0.

Back

Next >

Lesson 💼

Main n

Additional Example 4 Continued

C. How long does it take the truck to travel 660 miles?

Find the value of x when y = 660

- y = 55x Write the equation for the direct variation.
- 660 = 55x Substitute 660 for y.
- 55 55 Divide both sides by 660.

12 = x

It will take the truck 12 hours to travel 660 miles.

Lesson 💼

Main 💼

Next >

Back

Check It Out: Example 4A

A bicycle travels at a speed of 12 miles per hour.

Write a direct variation equation for the distance y the bike travels in x hours.

distance = 12 miles per hour times number of hours Use the formula y = kx. k = 12 y = 12 • xy = 12x

Lesson 💼

Main n

Back

Check It Out: Example 4B

A bicycle travels at a speed of 12 miles per hour. Graph the data.

Make a table. Since time cannot be negative, use nonnegative number for x.

X	<i>y</i> = 12x	У	(<i>x, y</i>)
0	y = 12 <mark>(0)</mark>	0	(0, 0)
1	y = 12 <mark>(1)</mark>	12	(1, 12)
2	y = 12 <mark>(2)</mark>	24	(2, 12)

Lesson 💼

Main n

Back

Check It Out: Example 4 Continued

Use the ordered pairs top plot the points on a coordinate plane. Connect the points in a straight line. Label the axes.

Check

y = 12x is in slope-intercept form with m = 12and b = 0. The graph shows a slope of 12 and a y-intercept of 0.

Back

Next >

Lesson 💼

Main n

Check It Out: Example 4 Continued

C. How long does it take the bicycle to travel 96 miles?

Find the value of x when y = 96

- y = 12x Write the equation for the direct variation.
- 96 = 12x Substitute 96 for x.
- 12 12 Divide both sides by 12.

8 = x

It will take the bicycle 8 hours to travel 96 miles.

Lesson 💼

Main 🕇

Next >

Back

Lesson Quizzes

Standard Lesson Quiz

Lesson Quiz for Student Response Systems

Next >

< Back

Lesson 💼

Main n

© HOLT McDOUGAL, All Rights Reserved

Lesson Quiz: Part I

Tell whether each of the following represents a direct variation. If so, identify the constant of variation.

Lesson 💼

Main n

Next >

Back

1.
$$12y = 6x$$
 yes; $k = \frac{1}{2}$

2.	Speed (mi/h)	40	50	60
	Time (h)	7.5	6	5

no

Lesson Quiz: Part II

- **3.** A cheetah runs at a speed of 0.75 miles per minute.
- **a.** Write a direct variation equation for the distance y the cheetah runs in x minutes. y = 0.75x
- **b.** Graph the data.
- c. How far does the

3.75 miles

cheetah run in 5

minutes?

Back

Next >

Lesson 💼

Main n

Lesson Quiz for Student Response Systems

1. Tell whether the equation represents a direct variation. If so, identify the constant of variation.

Lesson 💼

Main n

Back

Next >

$$y = 1.5x$$

- **A.** yes; *k* = 0
- **B.** yes; *k* = 1

D. no

Lesson Quiz for Student Response Systems

2. Tell whether the data set represents a direct variation. If so, identify the constant of variation.

Lesson 🕇

Main 🖬

Back

Time (hr)	0	2	3	5
Distance (mi)	0	10	18	40

- **A.** yes; *k* = 10
- **B.** yes; *k* = 5
- **C.** yes; *k* = 0

Lesson Quiz for Student Response Systems

3. An employee's pay is \$8.50 per number of hours worked. Write a direct variation equation for the amount *y* the employee gets in *x* number of hours. Graph the data. How much does the employee get in 8 hours?

Lesson n

Main n

Back

