Representing Linear Functions

- Objectives:
- Represent situations using a linear function
 - Determine Domain and Range values
- Use a variety of methods to represent linear functions
 - Represent functions in a variety of ways

Linear Function Definitions

- A linear function can be represented in a lot of different ways – tables, graphs and equations.
- When you determine that a function is linear, you can find the domain and range for that function.
- **Linear Function**= a function that can be represented by a linear equation.
- Linear Equation = an equation that graphs into a straight line.

Exampl

Use the table to find the solution

Determine whether the Data in the table represents a linear function

Step 1

Check the rate of change in the time. The rate of change is constant, every 10 minutes.

Step 2

Check the rate of change in distance. This rate of change is **NOT** constant.

The ANSWER –

Since the rate of change is NOT constant for both variables, the data does **NOT** represent a linear function.

	Time (min)		Distance biked (miles)		
		10	3		
_	10	20	6	+3	
	10	30	10	+4	
+	10	40	14	+4	
+	10	50	17	+3	
+1	10	60	19	+2	

Example 2

Determine whether 2y = 4x - 7 represents a linear function.

First recall that the definition of a linear function is that it can be written in the form Ax + By = C and A, B, and C are real numbers with A and $B \neq 0$.

Then get the equation in the right form.

$$2y = 4x - 7$$
 $-4x$
 $-4x + 2y = -7$
A
B
C

The ANSWER –

Since the A = -4, B = 2 and C = -7, and each is a real number, the equation **does** represent a linear function.

Example 3

Determine whether $y^2 = 4$ represents a linear function.

Again recall that the definition of a linear function is that it can be written in the form Ax + By = C and A, B, and C are real numbers with A and $B \neq 0$.

When we look at the linear function standard form, we notice that both the x and y variable are exponent "1".

$$y^2 = 4$$

The ANSWER –

Since the exponent of y is 2 (not 1) the equation does **NOT** represent a linear function.

Exampl

Make a table to help find the solution

The problem: Enrique earns \$6.00 per hour working at Quikee Mart. He is saving his wages to buy a 3GB iPOD. The iPOD is on sale for \$210.00. How many hours must Enrique work so he will have enough money to buy his iPOD?

- Step 1 Make a table
- Step 2

Figure how much the domain and range values are changing. For the domain, you may use multiples of 5 to help you find the number of hours he needs to work

How do I know that this rate of change is constant?

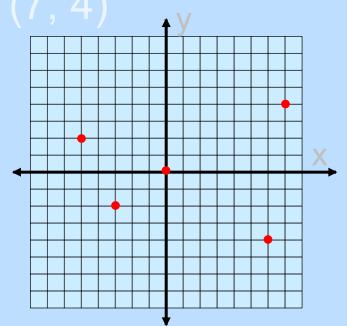
• The ANSWER –

Enrique must work 35 hours to earn his iPOD.

Hours worked	Amount earned
5	\$30 +30
10	\$60
15	*90
20	\$120
25	+30
30	+30 \$180
+5 35	\$210

Identifying Domain and Range

- Name the domain and range for the set of ordered pairs.
- Then graph the ordered pairs to see if they represent a function.


$$(-5, 2), (-3, -2), (0, 0), (6, -4), (7, 4)$$

Domain: {-5, -3, 0, 6, 7}

Range: { 2, -2, 0, -4, 4 }

Is this a function?

Yes, it passes the vertical line test

Conclusion

- When you determine that a function is linear, you can find _____ and ___ for that function.

Linear Function =

Linear Equation = ____