Introduction

Thoughts or feelings in language are often conveyed through expressions; however, mathematical ideas are conveyed through <u>algebraic expressions</u>.

Algebraic expressions are <u>mathematical statements</u> that include numbers, operations, and variables to represent a number or quantity.

<u>Variables</u> are letters used to represent values or unknown quantities that can change or vary. One example of an algebraic expression is 3x - 4. Notice the variable, <u>x</u>.

Key Concepts

- Expressions are made up of <u>terms</u>. A term is a <u>number</u>, a <u>variable</u>, or the product of a number and variable(s). An <u>addition</u> or <u>subtraction</u> sign separates each term of an expression.
- In the expression $4x^2 + 3x + 7$, there are 3 terms: $\frac{4x^2}{3x}$, and $\frac{7}{2}$.
- The <u>factors</u> of each term are the numbers or expressions that when multiplied produce a given product. In the example above, the factors of $4x^2$ are <u>4</u> and <u>x²</u>. The factors of 3x are <u>3</u> and <u>x</u>.

Key Concepts, continued

- 4 is also known as the <u>coefficient</u> of the term $4x^2$. A coefficient is the number multiplied by a variable in an algebraic expression. The coefficient of 3x is 3.
- The term 4x² also has an <u>exponent</u>. Exponents indicate the number of times a factor is being <u>multiplied</u> by itself. In this term, <u>2</u> is the exponent and indicates that x is multiplied by itself 2 times.
- Terms that do not contain a variable are called <u>constants</u> because the quantity does not change. In this example, <u>7</u> is a constant.

Key Concepts, *continued*

Expression	$4x^2 + 3x + 7$		
Terms	4 <i>x</i> ²	3 <i>x</i>	7
Factors	4 and x^2	3 and <i>x</i>	
Coefficients	4	3	
Constants			7

Key Concepts, continued

• Terms with the same variable raised to the same exponent are called <u>like terms</u>. In the example 5x + 3x - 9, 5x and 3x are like terms. Like terms can be combined following the <u>order of operations</u> by evaluating grouping symbols, evaluating exponents, completing multiplication and division, and completing addition and subtraction from left to right. In this example, the sum of 5x and 3x is <u>8x</u>.

Common Errors/Misconceptions

- incorrectly following the order of operations
- incorrectly identifying like terms
- incorrectly combining terms involving subtraction

Example 2 2 times a number plus 5 is 27.

1. Translate the verbal expression into an algebraic expression.

2. Identify all terms

3. Identify the factors.

4. Identify all coefficients.

5. Identify any constants.

Example 2 2 times a number plus 5 is 27.

Expression		
Terms		
Factors		
Coefficients		
Constants		

Guided Practice

Example 2

A smartphone is on sale for 25% off its list price. The sale price of the smartphone is \$149.25. What expression can be used to represent the list price of the smartphone? Identify each term, coefficient, constant, and factor of the expression described.

1. Translate the verbal expression into an algebraic expression.

Let x represent the unknown list price. Describe the situation. The list price is found by adding the discounted amount to the sale price:

sale price + discount amount

The discount amount is found by multiplying the discount percent by the unknown list price. The expression that represents the list price of the smartphone is 149.25 + 0.25x.

Coordinate Algebra — Instruction 1.1.1: Identifying Terms, Factors, and Coefficients

2. Identify all terms.

There are two terms described in the expression: the sale price of \$149.25, and the discount of 25% off the list price, or 149.25 and 0.25x.

3. Identify the factors.

0.25x is the product of the factors 0.25 and x.

4. Identify all coefficients.

0.25 is multiplied by the variable, *x*; therefore, 0.25 is a coefficient.

5. Identify any constants.

The number that does not change in the expression is 149.25; therefore, 149.25 is a constant.

Expression

Terms

Factors

Coefficients

Constants

Guided Practice

Example 3

Helen purchased 3 books from an online bookstore and received a 20% discount. The shipping cost was \$10 and was not discounted. Write an expression that can be used to represent the total amount Helen paid for 3 books plus the shipping cost. Identify each term, coefficient, constant, and factor of the expression described.

1. Translate the verbal expression into an algebraic expression.

Let *x* represent the unknown price. The expression used to represent the total amount Helen paid for the 3 books plus shipping is 3x - 0.20(3x) + 10.

2. Simplify the expression.

The expression can be simplified by following the order of operations and combining like terms.

3x - 0.20(3x) + 10

$$3x - 0.60x + 10$$

Multiply 0.20 and 3x. Combine like terms: 3x and -0.60x.

2.4x + 10

3. Identify all terms.

There are two terms in the described expression: the product of 2.4 and x, and the shipping charge of \$10: 2.4x and 10.

Guided Practice: Example 3, *continued* 4. Identify the factors. 2.4*x* is the product of the factors 2.4 and *x*.

5. Identify all coefficients.

2.4 is multiplied by the variable, *x*; therefore, 2.4 is a coefficient.

6. Identify any constants.

The number that does not change in the expression is 10; therefore, 10 is a constant.

Expression

Terms

Factors

Coefficients

Constants

