Dilations on a Square Grid

Lesson 4

CCSS Standards: Addressing

8.G.A
8.G.A.3

2019 Open Up Resources | Download for free at openupresources.org.

Let's dilate FIGURES ON A Rectangular

Estimating a Scale Factor

Estimate the scale factor for a dilation. Estimate doesn't mean guess! Use the math tools that you have available to you!

Point *C* is the dilation of point *B* with center of dilation *A* and scale factor *s*. Estimate *s*. Be prepared to explain your reasoning.

Is the scale factor greater than 1? Is the scale factor greater than 2? Is the scale factor greater than 3? Is the scale factor **greater or less than 2.5**? How do you know?

Dilations on a Grid

Activity 4.2
 Anticipate, Monitor, Select, Sequence, Connect
 Discussion Supports

Please begin working on this task using Quiet Work Time.

How did you find the dilation?

	A				В					
		Ρ								
	D				С					

How did you find the dilation?

Now, let's work with a grid and its coordinates! The coordinates give a concise way

to *name* points.

Card Sort: Matching Dilations on a Coordinate Grid

Activity 4.3Compare and Connect

- Your teacher will give you some cards. Each of Cards 1–6 shows a figure in the coordinate plane and describes a dilation.
- Each of Cards A–E describes the image of the dilation for one of the numbered cards.
- ★ Match number cards with letter cards. One of the number cards will not have a match. For this card, you'll need to draw an image.

factor 1.5.

BIG IDEAS

A dilation maps a circle to a circle, a quadrilateral to a quadrilateral, and a triangle to a triangle.

If the **center of dilation** is one of the vertices, then that vertex is on the dilated polygon.

(Which image shows an example of this idea?)

If the scale factor is less than 1 then the dilated image is **SMALLER**

than the original

figure.

If the scale factor is great **CARGER** then the dilated image is ______ than the original

figure.

"Are you ready for more?"

The image of a circle under dilation is a circle when the center of dilation is the center of the circle. What happens if the center of dilation is a point on the circle?

Using center of dilation (0,0) and scale factor 1.5, dilate the circle shown on the diagram. This diagram shows some points to try dilating.

How are dilations performed on a square grid?

How do coordinates help describe and perform dilations?

How can you dilate Q with center P and scale factor $\frac{1}{2}$?

When the grid has coordinates, it's easier to communicate the location of new points!

In the figure, A = (0,0) and B = (2,1). What is the dilation of *B* with center *A* and scale factor 3?

We can simply say (6,3) to communicate the answer!

Today's Goals

I can apply dilations to figures on a rectangular grid.

□ If I know the angle measures and side lengths of a polygon, I know the angle measures of the polygon if I apply a dilation with a certain scale factor.

A Dilated Image

