CALCULUS

Antiderivatives

$$v(t) = t^2 - 6t + 2$$

Find the antiderivative

$$f'(x) = 2x^3 - 5x + 7$$

$$f'(x) = x^4 - 3x^3 + 5x^2 - x + 5$$

$$f'(x) = \sqrt{x} - 4$$

Basic Rule for Integration

$$\int x^n dx$$

Indefinite Integral

$$\int f(x)dx$$

Evaluate the indefinite integral

$$\int (9-x^2)dx$$

$$\int \left(\frac{6}{x^2} - x^{-3}\right) dx$$

the indefinite integral
$$\int (9-x^2)dx \qquad \int \left(\frac{6}{x^2}-x^{-3}\right)dx \qquad \int \left(\frac{2x^3-4x^2+7x}{x}\right)dx$$

The First Fundamental Theorem of Calculus

If a function f is continuous on the closed interval [a, b] and F is an antiderivative of f on the interval [a, b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Evaluate the definite integral

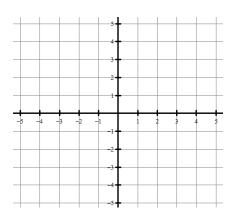
$$\int_{3}^{6} (3x^2 + x - 2) dx$$

Evaluate the definite integral

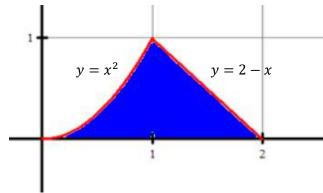
$$\int_{-2}^{5} (4-6x)dx$$

Evaluate the definite integral

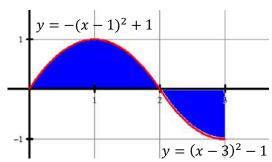
$$\int_{0}^{3} |x-2| dx$$



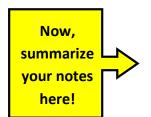
Find the area under the curve for the interval [0,2]



Set up the integral(s) to find the area of the shaded region. Do NOT solve!



SUMMARY:



Find the antiderivatives of the following.

1.
$$f'(x) = 9x^2 - 5x + 2$$

2.
$$f'(x) = \frac{x^4 - 4x^3 + 7x}{x}$$

3.
$$f'(x) = 2\sqrt{x} + 3$$

Evaluate the indefinite integrals.

4.
$$\int (3x + \pi) dx$$

$$5. \int \left(x^{-3} + \frac{9}{x^2}\right) dx$$

6.
$$\int (5-6x^2) dx$$

Evaluate the definite integrals using the Fundamental Theorem of Calculus.

$$\int\limits_{0}^{4}(2x+4)dx$$

8.

$$\int_{-1}^{3} (6x^2 - 8) dx$$

$$\int_{0}^{9} \sqrt{x} \ dx$$

$$\int_{4}^{2} \left(\frac{x^2 - 1}{x^2} \right) dx$$

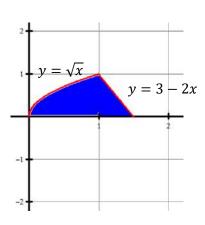
Evaluate the definite integrals using the Fundamental Theorem of Calculus.

$$\int_{-5}^{0} |x+3| dx$$

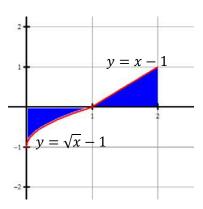
$$\int_{-4}^{-1} \left(\frac{3}{x^2} + 1\right) dx$$

Find the area of the shaded region.

13.



14.



15.



MULTIPLE CHOICE

Use the table below for questions 1-2

x	0	1	2	3
f(x)	-1	0	1	-2
F(x)	4	3	A	8

- 1. What is $\int_1^3 f(x) dx$?
 - (A) 5
 - (B) 8
 - (C) -2
 - (D) 19
 - (E) Cannot be determined from the information given
- 2. If the area under the curve f(x) on the interval $0 \le x \le 2$ is equal to the area under the curve f(x) on the interval $2 \le x \le 3$, then A =
 - (A) 4
 - (B) 5
 - (C) 5.5
 - (D) 6
 - (E) 7
- 3. The function f, continuous for all real numbers x, has the following properties:

$$I. \int_1^3 f(x) dx = 7$$

II.
$$\int_{1}^{5} f(x) dx = 10$$

What is the value of k if $\int_3^5 kf(x)dx = 33$?

- (A) -11
- (B) -3
- (C) 0
- (D) 3
- (E) 11
- 4. What is the *y*-intercept of the line that is tangent to the curve $f(x) = \sqrt{2x 3}$ at the point on the curve where x = 6?
 - (A) 0
 - (B) $\frac{1}{3}$
 - (C) $\frac{2}{3}$
 - (D) 1
 - (E) $\frac{4}{5}$

- 1. A particle moves along the y-axis with velocity $v(t) = -\frac{2}{\pi} \sin\left(\frac{\pi}{2}t\right) \ cm/sec$ for $t \ge 0$ in seconds.
 - (a) In what direction is the particle moving at $t = \frac{1}{3}$? Justify.

(b) Find the earliest time, $t_1 > 0$, when the particle changes direction.

(c) What is the particle's average acceleration over the interval $[0, t_1]$?

(d) Does the concavity of the position function, s(t), change sign over the interval $[0, t_1]$?