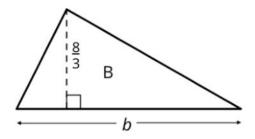
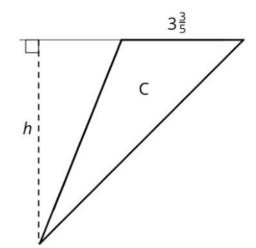

4-14: Learning Goals

 Let's explore area and volume when fractions are involved.

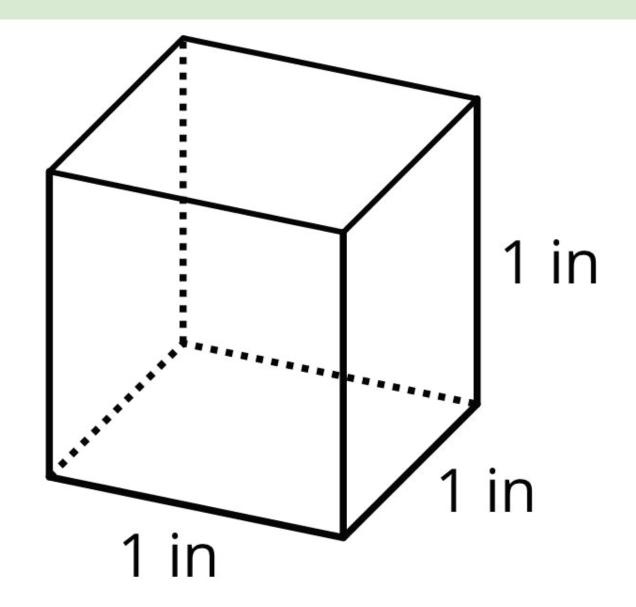
4-14-1: Area of a Triangle


Find the area of Triangle A in square centimeters. Show your reasoning.

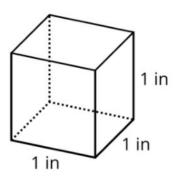


4-14-2: Bases and Heights of Triangles

1. The area of Triangle B is 8 square units. Find the length of *b*. Show your reasoning.



2. The area of Triangle C is $\frac{54}{5}$ square units. What is the length of h? Show your reasoning.


4-14-3: Volumes of Cubes and Prisms

4-14-3: Volumes of Cubes and Prisms

- 1. Your teacher will give you a set of cubes with an edge length of $\frac{1}{2}$ inch. Use them to help you answer the following questions.
 - a. Here is a drawing of a cube with an edge length of 1 inch. How many cubes with an edge length of $\frac{1}{2}$ inch are needed to fill this cube?

- b. What is the volume, in cubic inches, of a cube with an edge length of $\frac{1}{2}$ inch? Explain or show your reasoning.
- c. Four cubes are piled in a single stack to make a prism. Each cube has an edge length of $\frac{1}{2}$ inch. Sketch the prism, and find its volume in cubic inches.

4-14-3: Volumes of Cubes and Prisms

- 2. Use cubes with an edge length of $\frac{1}{2}$ inch to build prisms with the lengths, widths, and heights shown in the table.
 - a. For each prism, record in the table how many $\frac{1}{2}$ -inch cubes can be packed into the prism and the volume of the prism.

prism length (in)	prism width (in)	prism height (in)	number of $\frac{1}{2}$ -inch cubes in prism	volume of prism (cu in)
$\frac{1}{2}$	1 2	1/2		
1	1	1 2		
2	1	1 2		
2	2	1		
4	2	$\frac{3}{2}$		
5	4	2		
5	4	21/2		

- b. Analyze the values in the table. What do you notice about the relationship between the edge lengths of each prism and its volume?
- 3. What is the volume of a rectangular prism that is $1\frac{1}{2}$ inches by $2\frac{1}{4}$ inches by 4 inches? Show your reasoning.

4-14: Lesson Synthesis

How is finding an unknown base or height in a triangle different than finding an unknown side length in a rectangle?

What multiplication equation can we write to help us find the height of a triangle that has a base of $\frac{5}{4}$ cm and an area of 10 sq cm?

How can we use cubes with $\frac{1}{2}$ -inch edge lengths to find the volume of a prism that is $\frac{1}{2}$ inch by 2 inch by $3\frac{1}{2}$ inches?

4-14: Learning Targets

- I can use division and multiplication to solve problems involving areas of triangles with fractional bases and heights.
- I can explain how to find the volume of a rectangular prism using cubes that have a unit fraction as their edge length.
- I know how to find the volume of a rectangular prism even when the edge lengths are not whole numbers.

4-14-4: Triangles and Cubes

- 1. A triangle has a base of $3\frac{2}{5}$ inches and an area of $5\frac{1}{10}$ square inches. Find the height of the triangle. Show your reasoning.
- 2. Answer each of the following questions and show your reasoning.
 - a. How many cubes with an edge length of $\frac{1}{3}$ inch are needed to build a cube with an edge length of 1 inch?

b. What is the volume, in cubic inches, of one cube with an edge length of $\frac{1}{3}$ inch?

