AP Exam Review

Tuesday, 5/8/18 3:30 - 5:30

AAAAAAAAAA

3. If
$$f(x) = \frac{5-x}{x^3+2}$$
, then $f'(x) = \frac{(\chi^3+2)(-1) - (5-x)(3\chi^2)}{(\chi^3+2)^2}$
(A) $\frac{-4x^3+15x^2-2}{(x^3+2)^2}$
(B) $\frac{-2x^3+15x^2+2}{(x^3+2)^2}$
(C) $\frac{2x^3-15x^2-2}{(x^3+2)^2}$
(D) $\frac{4x^3-15x^2+2}{(x^3+2)^2}$

6. If f is the function given by $f(x) = 3x^2 - x^3$, then the average rate of change of f on the closed interval [1, 5] is

$$\frac{f(s)-f(1)}{s-1}=\frac{(4s-12s)-(3-1)}{4}$$

7. If $\int_{4}^{-10} g(x) dx = -3$ and $\int_{4}^{6} g(x) dx = 5$, then $\int_{-10}^{6} g(x) dx = 5$

8. If f is the function given by $f(x) = e^{x/3}$, which of the following is an equation of the line tangent to the graph

of f at the point $(3 \ln 4, 4)$?

(A)
$$y - 4 = \frac{4}{3}(x - 3 \ln 4)$$

(B)
$$y - 4 = 4(x - 3 \ln 4)$$

(C)
$$y-4=12(x-3 \ln 4)$$

(D)
$$y - 3 \ln 4 = 4(x - 4)$$

$$m_{ton} = \frac{4}{3}$$

- 12. The number of gallons of water in a storage tank at time t, in minutes, is modeled by w(t) = 25 t² for 0 ≤ t ≤ 5. At what rate, in gallons per minute, is the amount of water in the tank changing at time t = 3 minutes?
 - (A) 66
- (B) 16
- (C) -3
- (D) -6

w'(+)=-2+

. .

(-6)

- 13. Shown above is a slope field for which of the following differential equations?
 - (A) y x(4 y)
 - (B) $\frac{dy}{dx} = \frac{y(4-y)}{4}$
 - (C) a) m(4 y)
 - (b) $\frac{dy}{dx} = \frac{\sqrt{4-y}}{4}$ (c) when y > 4

- 14. The weight of a population of yeast is given by a differentiable function y, where y(t) is measured in grams and t is measured in days. The weight of the yeast population increases according to the equation $\frac{dy}{dt} = ky$, where k is a constant. At time t = 0, the weight of the yeast population is 120 grams and is increasing at the rate of 24 grams per day. Which of the following is an expression for y(t)?
 - (A) 120e^{24t}
 - (B) 120e^{t/5}
 - (C) $e^{t/5} + 119$
 - (D) 24t + 120

- 15. The graphs of the functions f and g are shown in the figures above. Which of the following statements is false?
 - (A) $\lim_{x \to 1} f(x) = 0$
 - (B) $\lim_{x\to 2} g(x)$ does not exist.
 - (C) $\lim_{x\to 1} (f(x)g(x+1))$ does not exist.
 - (D) $\lim_{x\to 1} (f(x+1)g(x))$ exists.

16. Let f be the function defined by $f(x) = -3 + 6x^2 - 2x^3$. What is the largest open interval on which the graph of f is both concave up and increasing?

(A)
$$(0,1)$$
 (B) $(1,2)$ (C) $(0,2)$
 $f'(x) = 12x - 6x^2$

$$f'(x) = 12x - 6x^{\circ}$$

- 17. A particle moves along the x-axis so that at time t > 0 its position is given by $x(t) = 12e^{-t}\sin t$. What is the first time t at which the velocity of the particle is zero? $V(+) = 12e^{-t}\cos t$. What is the
- (A) $\frac{\pi}{4}$
- (B) $\frac{\pi}{2}$
- (C) $\frac{3\pi}{4}$
- (D) π

18. Let F be the function given by $F(x) = \int_3^x (\tan(5t)\sec(5t) - 1) dt$. Which of the following is an expression for F'(x)?

(A)
$$\frac{1}{5}\sec(5x) - 1$$

(C) tan(5x)sec(5x)

(D) $\tan(5x)\sec(5x) - 1$

9. Let f be the function given by $f(x) = 2\cos x + 1$. What is the approximation for f(1.5) found by using the line

(A) -2 (B) 1 (C) $\pi - 2$ (D) 4 - 2

1=-5(1.5=1) A=-5+11 06 (1-