Curriculum Framework Science

Grade: 9 School: The Delaware Met **Curricular Tool: DE Science Coalition** Teacher: **Standards Alignment Unit Concept Essential Questions** Assessments **Big Ideas** Student Learning Targets **Unit One: Energy Timeline : 10 weeks** Standard One **Big Ideas Essential Ouestions: Suggested Formative** Systems, Order, and The Nature and Application of Sciences and Technology Assessments: What makes a question Students develop a crash **Organization:** Energy scientific? What constitutes **Strand One** takes many forms. barrier that will stop a car evidence? When do you These forms are grouped in the shortest distance **Understandings and Abilities of Scientific Inquiry** know you have enough as kinetic energy and without injuring a evidence? Why is it Substrand A. Scientists conduct investigations for a variety of reasons potential energy. necessary to justify and passenger. including to explore new phenomena, to replicate other's results, to test communicate an Evidence, Models, and how well a theory predicts, to develop new products, and to compare Students demonstrate their explanation? **Explanation:** Diagrams theories. understanding of how and equations are used to wave energy can be used explain energy storage How do science and by designing inventions Substrand B. : Science is distinguished from other ways of knowing by technology influence each and transfer. the use of empirical observations, experimental evidence, logical that transfer or transform Investigations supply other? arguments and healthy skepticism. energy to perform evidence for practical tasks. explanations. How have past scientific Substrand C Theories in science are well-established explanations of contributions influenced natural phenomena that are supported by many confirmed observations Students create a learning Constancy, Change, current scientific and verified hypotheses. The application of theories allows people to map that shows their and Measurement: understanding of the world? make reasonable predictions. Theories may be amended to become understanding of the Changes are caused by more complete with the introduction relationships among the the transfer of energy. forms of energy and the of new evidence. These transfers can be What do we mean in science measured. Forces are transfer and when we hay that we stand Substrand D. Investigating most real-world problems requires building responsible for these transformation of energy. on the shoulders of giants? upon previous scientific findings and cooperation among individuals transfers. The total with knowledge and expertise from a variety of scientific fields. The Student journals amount of energy cannot Why do things have energy? results of scientific studies are considered valid when subjected to change. critical review where contradictions are resolved and the explanation is Exit questions Form and Function: How can energy be confirmed. Energy stored in transferred from one Lab reports resources must be material to another? Substrand E. In communicating and defending the results of scientific transferred into more inquiry, arguments must be logical and demonstrate connections Journals useful forms before it between natural phenomena, investigations, and the historical body of What happens to a material

Standards Alignment	Unit Concept	Essential Questions	Assessments
	Big Ideas	Student Learning Targets	
scientific knowledge. (American Association for the Advancement of	can be helpful to us.	when energy is transferred	Pre-learning concept
Science, 2001)		to it?	checks
Substrand F . Knowledge and skill from sources other than science are essential to scientific inquiry. These include mathematics, reading, writing, and technology.		What happens to the energy in a system – where does this energy come from, how	Suggested Summative Assessments: Unit Summative Assessment is indicated to
 Strand Two Science, Technology and Society Substrand A. The pursuit of science can generate the need for advanced technology. Advanced technology, in turn, can provide the opportunity to pursue new scientific knowledge. 		is it changed within the system, and where does it ultimately go? How does the flow of energy affect the materials in the system?	be in Pilot form. When the assessment is made available, it can be used for post summative assessment purposes.
Substrand B. The social, economic, and political forces of a society have a significant influence on what science and technology programs are pursued, funded, and implemented.		What is a "responsible" use of energy? Are there alternative forms of energy that will serve our needs, or	
Strand Three		better ways of using	
History and Context of Science		traditional forms of energy?	
Instory and Context of Science			
Substrand A . New disciplines of science emerge as older disciplines interface into an integrated study of the natural world. As the body of scientific knowledge grows, the boundaries between individual disciplines diminish.			
Standard Three Energy and Its Effects			
Strand One			
Forms and Sources of Energy			
I of the und bources of Energy			
Substrand A . Electromagnetic waves carry a single form of energy called electromagnetic (radiant) energy			
Substrand B . An object has kinetic energy because of its linear motion, rotational motion, or both. The kinetic energy of an object can be determined knowing its mass and speed. The object's geometry also needs to be known to determine its rotational kinetic energy. An object			

Standards Alignment	Unit Concept	Essential Questions	Assessments
	Big Ideas	Student Learning Targets	
can have potential energy when under the influence of gravity, elastic			
forces or electric forces and its potential energy can be determined from			
its position			
Substrand C. Mechanical waves result from the organized vibrations			
of molecules in substances. Kinetic energy can be transferred very			
quickly over large distances by mechanical waves.			
Substrand D . Thermal (heat) energy is associated with the random			
kinetic energy of the molecules of a substance.			
kinetic energy of the molecules of a substance.			
Substrand E. Magnetic energy and electrical energy are different			
aspects of a single electromagnetic energy, which results from the			
motion of electrical charges.			
Substrand F. Chemical energy is derived from the making and			
breaking of chemical bonds.			
Substrand G . Nuclear energy is a form of potential energy that is			
released when a portion of the mass of the nucleus is converted to			
energy through nuclear fusion, nuclear fission, or radioactive decay.			
Strand Two			
Forces and Transfer of Energy			
Substrand B. Forces are mechanisms that can transfer energy from one			
object to another. A force acting on an object and moving it through a			
distance does work on that object and changes its kinetic energy,			
potential energy, or both. Power indicates the rate at which forces			
transfer energy to an object or away from it.			
Substrand E . Gravity is a universal force of attraction that each mass			
exerts on any other mass. The strength of the force depends on the			
masses of the objects and the distance between them. The force of			
gravity is generally not important unless at least one of the two masses			
involved is huge (a star, the Earth or another planet or a moon).			
in or the is hege (a star, the Darm of another planet of a moon).			
Substrand F Electric forces between charged objects are attractive or			
repulsive. The electric forces between electrons and protons are			

Standards Alignment	Unit Concept	Essential Questions	Assessments
attractive, determine the structure of atoms, and are involved in all	Big Ideas	Student Learning Targets	
chemical reactions. The electromagnetic forces acting between atoms or			
molecules are much stronger than the gravitational forces between the			
same atoms or molecules and are responsible for many common forces			
such as friction, tensions and supporting forces			
Substrand G. Electromagnetic forces are responsible for the physical			
properties of materials (e.g., the boiling point of a liquid) and the			
mechanical properties of materials (e.g., surface tension).			
Substrand I. The nuclear forces that hold the nucleus of an atom			
together are much stronger than the repulsive electric forces acting			
between the protons that would make the nucleus fly apart, therefore,			
most atoms have stable nuclei.			
Strand Three			
Energy Interacting with Materials; The Transformation and			
Conservation of Energy			
Substrand A. Energy cannot be created nor destroyed. Energy can be			
transferred from one object to another and can be transformed from one			
form to another, but the total amount of energy never changes.			
Recognizing that energy is conserved, the processes of energy			
transformation and energy transfer can be used to understand the			
changes that take place in physical systems.			
Substrand B. Most of the changes that occur in the universe involve			
the transformation of energy from one form to another. Almost all of			
these energy transformations lead to the production of some			
heat energy, whether or not heat energy is the desired output of the transformation process.			
autorimatori process.			
Substrand C. Waves (e.g., sound and seismic waves, waves in water,			
and electromagnetic waves) carry energy that can have important			
consequences when transferred to objects or substances.			
Substrand D. When waves interact with materials, the energy they			
transfer often leads to the formation of other forms of energy. These			

Standards Alignment	Unit Concept Big Ideas	Essential Questions Student Learning Targets	Assessments
interactions, which depend upon the nature of the material and the	Dig Iucas	Student Learning Targets	
wavelength of the waves, can be used to create practical devices (e.g.,			
sonar and ultra sound imaging, solar cells, remote control units, and communication devices).			
Substrand E. Through reflection and refraction, electromagnetic waves			
can be redirected to produce concentrated beams or images of their source.			
Substrand F. When radiant energy is absorbed or emitted by individual			
atoms or molecules, the changes in energy involve the jump of an			
electron from one distinct energy level to another.			
Unit Two: Living By Chemistry-Alchemy Timeline: 10 weeks			
Standard One	Big Ideas	Essential Questions:	Suggested Formative
The Nature and Application of Sciences and Technology	Safety is paramount	How does the structure of	Assessments:
Strand One	when dealing with chemicals in the	an atom determine its	Worksheets
Understandings and Abilities of Scientific Inquiry	laboratory.	properties?	Student Journals
Substrand A . Understand that: Scientists conduct investigations for a	Matter can be	How do multiple atoms	Learning Logs
variety of reasons including to explore new phenomena, to replicate	characterized by its	combine to form larger	6 6
other's results, to test how well a theory predicts, to develop new	physical and chemical	compounds?	Self Assessments
products, and to compare theories. Be able to: Identify and form questions that generate a specific testable	properties		Teacher made pre-unit
hypothesis that guide the design and breadth of the scientific investigation.	The language of chemistry is logical and	How does the conservation of mass apply to the	assessment
Substrand B. Understand that: Science is distinguished from other	necessary when sharing information relating to	interaction of reactants and products in a chemical	Vocabulary work
ways of knowing by the use of empirical observations, experimental	chemical activity or	reaction?	Observation of student
evidence, logical arguments and healthy skepticism.	processes.	What is the common	discussions
Substrand C Theories in science are well-established explanations of	The periodic table is a	language used by chemists	Participation in oral
natural phenomena that are supported by many confirmed observations	tool that is useful in	in communicating chemical	discussions
and verified hypotheses. The application of theories allows people to	understanding and/or	information?	
make reasonable predictions. Theories may be amended to become more complete with the introduction of new evidence.	predicting the behaviors and/or interactions of	Learning Targets:	Suggested Summative Assessments:

Standards Alignment	Unit Concept	Essential Questions	Assessments
	Big Ideas	Student Learning Targets	
	atoms and molecules.	Demonstrate safe lab	Transfer tasks
Substrand D. Understand that: Investigating most real-world problems		practice for all activities.	Performance Tasks
requires building upon previous scientific findings and cooperation	All atoms have a		
among individuals with knowledge and expertise from a variety of	specific structure that is	Test solutions for electrical	Rubrics
scientific fields. The results of scientific studies are considered valid	key to its interaction	conductivity.	
when subjected to critical review where contradictions are resolved and	with other atoms.		Teacher made post unit
the explanation is confirmed.		Demonstrate the	assessment
	Some atoms contain	relationship between an	
Substrand F. Understand that: Knowledge and skill from sources other	more neutrons than	atom's structure, chemical	Note: The assessment
than science are essential to scientific inquiry. These include	others while maintaining	behavior, and its position in	piece for this unit is not
mathematics, reading, writing, and technology.	a specific	periodic table.	fully built out. When it is
	electron/proton balance.		published, the assessment
Strand Two	These atoms are called	Use models or drawings to	pieces as outlined by the
Science, Technology and Society	isotopes.	illustrate how compounds	coalition will be
		are formed.	implemented for
Substrand A. The pursuit of science can generate the need for	Atoms have valence		summative assessment
advanced technology. Advanced technology, in turn, can provide the	electrons that determine	Recognize that an atom	purposes.
opportunity to pursue new scientific knowledge.	the types of bonds an	with unequal numbers of	
	atom can make with	positive and negative	
Substrand B. The social, economic, and political forces of a society	other atoms.	charges is an ion.	
have a significant influence on what science and technology programs			
are pursued, funded, and implemented.		Test various solids to	
		determine which are good	
Strand Three		or poor conductors of	
History and Context of Science		electricity and relate this to	
		the position of its	
Substrand A. New disciplines of science emerge as older disciplines		constituent atoms on the	
interface into an integrated study of the natural world. As the body of		periodic table.	
scientific knowledge grows, the boundaries between individual			
disciplines diminish.		Demonstrate that ionic and	
		molecular compounds are	
Standard Two		electrically neutral.	
Materials and Their Properties			
		Sketch and interpret graphs	
Strand One		representing the melting,	
Properties and Structures of Materials		freezing, evaporation, and	
		condensation of water.	
Substrand A. All matter is composed of minute particles called atoms.			

Standards Alignment	Unit Concept Big Ideas	Essential Questions Student Learning Targets	Assessments
Most of the mass of an atom is concentrated in the nucleus. In the nucleus, there are neutrons with no electrical charge and positively charged protons. Negatively charged electrons surround the nucleus and	Dig lucas	Balance a simple chemical equation.	
overall, the atom is electrically neutral. Substrand C . Lastence of a given element differ in the number of		Conduct an investigation using the scientific method.	
Substrand C . Isotopes of a given element differ in the number of neutrons in the nucleus. Their chemical properties remain essentially the same.		Demonstrate how the properties of materials are	
Substrand D . The periodic table arranges the elements in order of atomic number (the number of protons). The elements are grouped according to similar chemical and physical properties. Properties vary in a regular pattern across the rows (periods) and down the columns (families or groups). As a result, an element's chemical and physical properties can be predicted knowing only its position on the periodic table.		used to the design manufactured goods.	
Substrand E. An atom's electron structure determines its physical and chemical properties. Metals have valence electrons that can be modeled as a sea of electrons where the valence electrons move freely and are not associated with individual atoms. These freely moving electrons explain the metallic properties such as conductivity, malleability, and ductility.			
Substrand F . Ionic compounds form when atoms transfer electrons. Covalent compounds form when atoms share electrons. Both types of interactions generally involve valence electrons and produce chemical bonds that determine the chemical property of the compound.			
Substrand H . A change of phase may occur when there is a change in the potential energy of the atoms or molecules of a substance.			
Strand Three Conservation of Matter			
Substrand A . The total mass of the system remains the same regardless of how atoms and molecules in a closed system interact with one another, or how they combine or break apart.			

Standards Alignment	Unit Concept	Essential Questions	Assessments
	Big Ideas	Student Learning Targets	
Unit Three: Earth Systems ¹			
Timeline: 10 weeks			
Note: The template for this unit is not available on the Delaware Departm			
below suggest the content that could be included in an Earth Systems unit		init is available through the Scie	ence Coalition membership,
this section of the curriculum map will be revised to include those standar	ds and concepts.		
Standard One	Big Ideas	Essential Questions:	Suggested Formative
The Nature and Application of Sciences and Technology	Earth System Science	How does understanding the	Assessments:
	analyses the dynamic	properties of Earth materials	Define Earth's subsystems
Strand One	interactions within and	and the physical laws that	
Understandings and Abilities of Scientific Inquiry	between the various	govern their behavior lead	Vocabulary work
	subsystems:	to prediction of Earth	
Substrand B. Understand that: Science is distinguished from other	Geosphere, Biosphere	events?	Observation of Student
ways of knowing by the use of empirical observations, experimental	(including humans),		collaboration
evidence, logical arguments and healthy skepticism.	Hydrosphere and	How do changes in one part	
Be able to: Design and conduct valid scientific investigations to control	Atmosphere of System	of the Earth system affect	Investigation Journals
all but the testable variable in order to test a specific hypothesis.	Earth, which resides	other parts of the system?	
	within its suprasystem,		Self assessment and
Substrand C. Understand that: Theories in science are well-established	the Solar System. Earth	In what ways can Earth	reflection
explanations of natural phenomena that are supported by many	System Science	processes be explained as	
confirmed observations and verified hypotheses. The application of	emphasises how these	interactions among spheres?	Teacher made pre-
theories allows people to make reasonable predictions. Theories may be	interactions may bring		assessments
amended to become more complete with the introduction	about global	How does technology	
of new evidence.	environmental change,	extend human senses and	Discussions/debates
	especially the	understanding?	
Substrand E. Understand that: In communicating and defending the	sustainability of human		Suggested Summative
results of scientific inquiry, arguments must be logical and demonstrate	life on planet Earth.		Assessments:
connections between natural phenomena, investigations, and the historical body of scientific knowledge. (American Association for the	A system may be		Teacher made post unit summative assessments
Advancement of Science, 2001)	A system may be considered as an		summative assessments
	arrangement of		Earth Science Research
Strand Two	interdependent		Project using multi-media
Science, Technology and Society	subsystems.		technology
Science, rectinology and society	5450,500,000		
Substrand A. The pursuit of science can generate the need for	The Geosphere is the		

¹ Some of the content for this unit, to serve as a representative place holder prior to having access to the Science Coalition Unit is taken from **Project Atmosphere Australia Online** <u>http://www.schools.ash.org.au/paa</u> with permissions for use by non-profit educational agencies.

Standards Alignment	Unit Concept	Essential Questions	Assessments
	Big Ideas	Student Learning Targets	
advanced technology. Advanced technology, in turn, can provide the	solid Earth that includes		
opportunity to pursue new scientific knowledge.	continental and oceanic		
	crust as well as the		
Standard Five	various layers of the		
Earth's Dynamic Systems	Earth's interior.		
Strand One	Solid Earth is separated		
Components of Earth	into four distinct layers:		
•	crust, mantle, outer core		
Substrand A. Minerals are the building blocks of rocks. Common	and inner core.		
rock-forming minerals found in Delaware (calcite, quartz, mica,			
feldspar, and hornblende) can be identified by their chemical and	The Biosphere is the life		
physical properties.	zone of the Earth and		
	includes all living		
Substrand B. Rocks can be classified as igneous, metamorphic and	organisms, including		
sedimentary based on the method of formation. The natural cycling of	humans.		
rocks includes the formation of new sediment though erosion and			
weathering and of new rock through heat and compaction of the	(The Anthrosphere), and		
sediment	all organic matter that		
	has not yet decomposed.		
Substrand C. Earth's geosphere is composed of layers of rocks which			
have separated due to density and temperature differences and classified	The Hydrosphere		
chemically into a crust (which includes continental and oceanic rock), a	includes all 'water'		
hot, convecting mantle, and a dense metallic core.	(H2O) on Earth in the		
	gaseous state (water		
Stand Two	vapour), in the liquid		
Interactions Throughout Earth's Systems	state (water) and in the		
	frozen state (The		
Substrand A. Earth's four spheres interact as part of a dynamic system	Cryosphere).		
in which changes over time are the result of external and internal energy			
sources.	The Atmosphere is the		
	gaseous envelope that		
Substrand B. Tectonic plates press against one another in some places	surrounds the Earth and		
(convergence), pull apart in other places (divergence), or slide past each	constitutes the transition		
other. These plate movements may result in the formation of mountain	between the surface of		
ranges, and can lead to earthquakes, volcanic eruptions, and tsunamis.	the Earth and the		
The consequences of these events impact the surrounding atmosphere,	vacuum of space.		
geosphere, hydrosphere, and the life existing within them.			

Standards Alignment	Unit Concept	Essential Questions	Assessments
	Big Ideas	Student Learning Targets	
processes which recycle atmospheric gases trapped in the ground back into the atmosphere. Strand Three Technology and Applications Substrand A. Advances in science and technology (such as satellite imaging, Global Positioning Satellite (GPS), and Geographic Information Systems (GIS)) have improved our understanding of global and local changes that result from Earth system interactions, and our capacity to anticipate and mitigate natural hazards such as volcanoes and earthquakes.	Big Ideas Earth's systems can be broken down into individual components which have observable measurable properties. Earth's components form systems. These systems continually interact at different rates of time, affecting the Earth locally and globally. Technology enables us to better understand Earth's systems. It also allows us to analyze the impact of human activities on Earth's systems and the impact of Earth's systems on human activity.	Student Learning Targets	

