
Unit 6: Data Analysis

Z-SCORE

Z-Scores are measurements of how far from the center (mean) a data value falls.

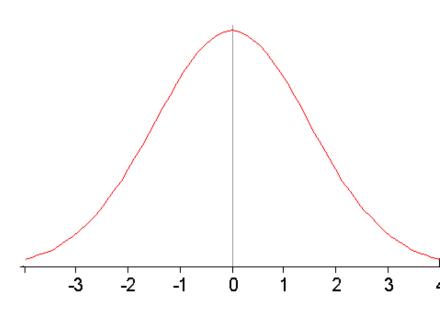
Ex: A man who stands
71.5 inches tall is 1
standardized standard
deviation from the mean.

Ex: A man who stands 64 inches tall is -2 standardized standard deviations from the mean.

Standardized Z-Score

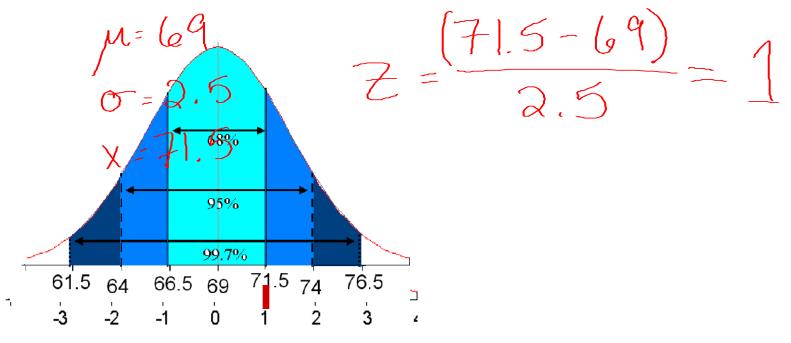
To get a Z-score, you need to have 3 things

- Observed actual data value of random variable x
- 2) Population mean, μ also known as expected outcome/value/center
- 3) Population standard deviation, σ


Then follow the formula.

$$\frac{x-\mu}{}$$

Q


Empirical Rule & Z-Score

About 68% of data values in a normally distributed data set have z-scores between -1 and 1; approximately 95% of the values have zscores between -2 and 2; and about 99.7% of the values have z-scores between -3 and 3.

Z-Score & Let H ~ N(69, 2.5)

What would be the standardized score for an adult male who stood 71.5 inches?

$$H \sim N(69, 2.5)$$
 $Z \sim N(0, 1)$

Z-Score & Let H ~ N(69, 2.5)

What would be the standardized score for an adult male who stood 65.25 inches?

$$\frac{65.25 - 69}{2.5} = -1.5$$

Comparing Z-Scores

Suppose Bubba's score on exam A was 65, where Exam A ~ N(50, 10) and Bubbette's score was an 88 on exam B,

where Exam B \sim N(74, 12).

Who outscored who? Use Z-score to compare.

(Bubba:)
$$(5-50)$$
 = 1.3

Bubbette: 88-74 = 1.17

Comparing Z-Scores

Heights for traditional college-age students in the US have means and standard deviations of approximately 70 inches and 3 inches for males and 165.1 cm and 6.35 cm for females. If a male college student were 68 inches tall and a female college student was 160 cm tall, who is relatively shorter in their respected gender groups?

Male
$$z = (68 - 70)/3 = -.667$$

Female $z = (160 - 165.1)/6.35 = -.803$

What if I want to know the PROBABILITY of a certain z-score?

Use the calculator! Normcdf!!!

2nd Vars

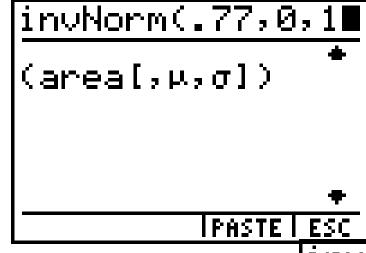
2: normcdf(

normcdf(lower, upper, mean(0), std. dev(1))

Find P(z < 1.85)

Find P(z > 1.85)

Find P(-.79 < z < 1.85)


What if I know the probability that an event will happen, how do I find the corresponding z-score?

- 1) Use the z-score formula and work backwards!
- 2) Use the InvNorm command on your TI by entering in the probability value (representing the area shaded to the left of the desired z-score), then 0 (for population mean), and 1 (for population standard deviation).

$P(Z < z^*) = .8289$ What is the value of z^* ?

```
DRAW
1:normaledf(
2:normaledf(
SHinvNorm(
4:tedf(
5:tedf(
6:X2edf(
74X2edf(
```

Using TI-84

invNorm(.77,0,1) .7388468537

P(Z < x) = .80What is the value of x?

$P(Z < z^*) = .77$ What is the value of z^* ?