
### **Today's Materials D**pencil a smile

# Using Function Notation to Describe Rules (Part 1)

# 4.1: Notice and Wonder: Two Functions (Page 14)

### **4.1 Notice and Wunder: Two Functions**

### What do you notice? What do you wunder?



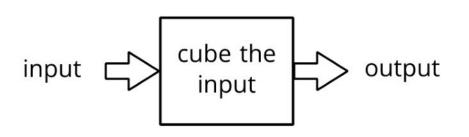
### **Today's Goals**

I can make sense of rules of functions when they are written in function notation, and create tables and graphs to represent the functions.

□ I can write equations that represent the rules of functions.



### **4.2 Four Functions**


(Page 14)



### **4.2 Four Functions**

This Function machine takes any input and cubes it to generate the output.

- Find the output when the inputs are
  0, 1, 3, and X
- Write the input-output relationship using function notation and name the function.



Let's Check! g(0)=0 g(1)=1 g(3)=27 g(x)=x^3

Some functions have a specific rule for getting its output. The rule can be described in words (like "cube the input") or with expressions (such as x^3)

### **4.2 Four Functions**

Here are descriptions and equations that represent four functions.

f(x) = 3x - 7Search document

g(x) = 3(x - 7)

 $h(x) = \frac{x}{3} - 7$ 

 $k(x) = \frac{x-7}{3}$ 

A. To get the output, subtract 7 from the input, then divide the result by 3.

B. To get the output, subtract 7 from the input, then multiply the result by 3.

C. To get the output, multiply the input by 3, then subtract 7 from the result.

D. To get the output, divide the input by 3, and then subtract 7 from the result.

1. Match each equation with a verbal description that represents the same function. Record your results.

### 4.2: Four Functions

$$f(x) = 3x - 1$$

$$g(x) = 3(x - 7)$$

$$h(x) = \frac{x}{3} - 7$$

$$k(x) = \frac{x-7}{3}$$

A. To get the output, subtract 7 from the input, then divide the result by 3.

B. To get the output, subtract 7 from the input, then multiply the result by 3.

C. To get the output, multiply the input by 3, then subtract 7 from the result.

D. To get the output, divide the input by 3, and then subtract 7 from the result.

2. For one of the functions, when the input is 6, the output is -3. Which is that function: *f*,*g h*, or *k* ? Explain how you know.

3. Which function value f(x),g(x), h(x) or k(x) is the greatest when the input is 0? What about when the input is 10?

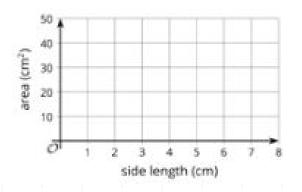


## 4.3 Rules for Area and Perimeter

Page 15



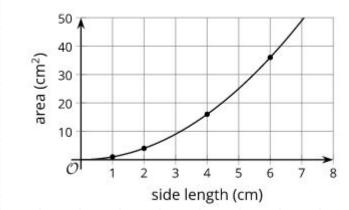
#### **4.3 Rules for Area and Perimeter**


- A square that has a side length of 9 cm has an area of 81 cm<sup>2</sup>. The relationship between the side length and the area of the square is a function.
  - a. Complete the table with the area for each given side length.

Then, write a rule for a function, A, that gives the area of the square in cm<sup>2</sup> when the side length is cm. Use function notation.

b. What does represent in this situation?What is its value?

c. On the coordinate plane, sketch a graph of this function.


#### Complete Question 1 (a-c) in your groups



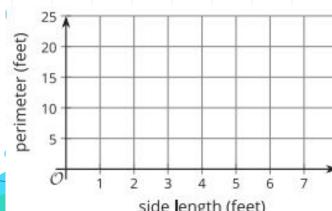
| side length (cm) | area (cm <sup>2</sup> ) |
|------------------|-------------------------|
| 1                |                         |
| 2                |                         |
| 4                |                         |
| 6                |                         |
| S                |                         |

### **4.3 Rules for Area and Perimeter**

What rule did your group come up with?

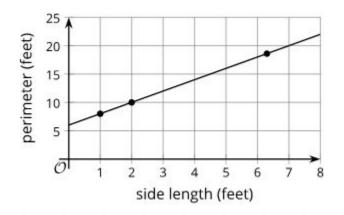


| side length (cm) | area (cm²) |
|------------------|------------|
| 1                | 1          |
| 2                | 4          |
| 4                | 16         |
| 6                | 36         |
| 8                | $s^2$      |


#### **4.3 Rules for Area and Perimeter**

- 2. A roll of paper that is 3 feet wide can be cut to any length.
  - a. If we cut a length of 2.5 feet, what is the perimeter of the paper?
  - b. Complete the table with the perimeter for each given side length.

Then, write a rule for a function, P, that gives the perimeter of the paper in feet when the side length in feet is *I*. Use function notation.


- c. What does P(11) represent in this situation? What is its value?
- d. On the coordinate plane, sketch a graph of this function.

| side length (feet) | perimeter (feet) |
|--------------------|------------------|
| 1                  |                  |
| 2                  |                  |
| 6.3                |                  |
| 11                 |                  |
| e                  |                  |



### Let's share your rule!

| side length (feet) | perimeter (feet) |
|--------------------|------------------|
| 1                  | 8                |
| 2                  | 10               |
| 6.3                | 18.6             |
| 11                 | 28               |
| l                  | $6+2\ell$        |



### Lesson Synthesis 4.3 : Rules for Area and Perimeter

$$f(x)=5x+3$$
  $g(x)=10x-4$ 

How would you describe to a classmate who is absent today what each equation means? What would you say to help them make sense of these?"

 $\rightarrow$  How do the rules help us find the value of f(10) or g(10)?

Is it possible to graph a function described this way? How?



### Cool Down: Perimeter of a Square

### Lesson 4: Using Function Notation to Describe Rules (Part 1)

#### **Cool Down: Perimeter of a Square**

1. Complete the table with the perimeter of a square for each given side length.

| side length<br>(inches) | perimeter<br>(inches) |
|-------------------------|-----------------------|
| 0.5                     |                       |
| 7                       |                       |
| 20                      |                       |

2. Write a rule for a function, *P*, that gives the perimeter of a square in inches when the side length is *x* inches.

3. What is the value of *P*(9.1)? What does it tell us about the side length and perimeter of the square?