
#### CLASSIFYING POLYNOMIALS

POLYNOMIAL is a sum or difference of terms. Polynomials have special names based on and the number of their (-TR they have.

#### NAMING BY NUMBER OF TERMS



# Classify each polynomial based on the number of terms that it has.

| Ex. 1:        | $5x^2 + 2x - 4$   | TRINOMIAL |
|---------------|-------------------|-----------|
| <i>Ex.</i> 2: | $3a^{3} + 2a$     | BINOMIAL  |
| <i>Ex.</i> 3: | 5mn <sup>2</sup>  | MONOMIAL  |
| <i>Ex.</i> 4: | $3x^2$            | MONOMIAL  |
| <i>Ex.</i> 5: | $4x^2 - 7x$       | BINOMIAL  |
| <i>Ex.</i> 6: | $-9x^2 + 2x - 5$  | TRINOMIAL |
| <i>Ex.</i> 7: | $5ab^2$           | MONOMIAL  |
| Ex. 8:        | $-9a^2bc^3-2ab^4$ | BINOMIAL  |

#### NAMING BY THE DEGREE

The **DEGREE** of a polynomial is the exponent of the term with the greatest exponent(s).

Find the degree of each polynomial below.

*Ex. 1:*  $5x + 9x^2$  Degree: *Ex. 2:*  $3x^3 + 5x - x^2$  Degree: *Ex. 3:*  $-4x^4 + 7$  Degree: *Ex. 4:*  $-x^4 + 2x^2 + 5x^3 - x$  Degree:

- 2 **BINOMIAL**
- 3 TRINOMIAL
- 1 **BINOMAL**
- 4 POLYNOMIAL

## The degree of a monomial is the **sum** of the exponents.

#### ADD 2 & 5

| <i>Ex.</i> 5: | $5xy + 9x^2y^3$ | Degree: | 5 | BINOMIAL |
|---------------|-----------------|---------|---|----------|
|               |                 |         |   |          |

- *Ex.* 6:  $3x^{3}y^{5} + 5xy x^{2}y$  Degree:
- *Ex.* 7:  $-4xy + 7y^3$  Degree:

*Ex.* 8:  $-x^4y + 2x^2y^5$ Degree:

- 8 TRINOMIAL
- 3 BINOMIAL
- 7 BINOMIAL

### Classify each polynomial above using its degree and number of terms.

- Ex. 1 QUADRATIC BINOMIAL
- Ex. 2 CUBIC TRINOMIAL
- Ex. 3 LINEAR BINOMIAL
- Ex. 4 QUARTIC POLYNOMIAL
- Ex. 5 5<sup>TH</sup> DEGREE BINOMIAL
- Ex. 6 8<sup>TH</sup> DEGREE TRINOMIAL
- Ex. 7 CUBIC BINOMIAL
- Ex. 8 7<sup>TH</sup> DEGREE BINOMIAL