3rd Grade Standards Covered by Units

Standard	Units
3.G.A.1: Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides) and that the shared attributes can define a larger category (e.g., quadrilaterals) • Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories	7
3.G.A.2: Partition shapes into parts with equal areas • Express the area of each part as a unit fraction of the whole	5
3.MD.A.1: Tell time using the terms quarter and half as related to the hour (e.g., quarter-past 3:00, half-past 4:00, and quarter till 3:00) • Tell and write time to the nearest minute and measure time intervals in minutes • Solve word problems involving addition and subtraction of time intervals in minutes (e.g., by representing the problem on a number line diagram)	6
3.MD.A.2: Measure and estimate liquid	6

volumes and masses of objects using standard units such as: grams (g), kilograms (kg), liters (l), gallons (gal), quarts (qt), pints (pt), and cups (c) • Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units (e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem)	
3.MD.B.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories (e.g., Draw a bar graph in which each square in the bar graph might represent 5 pets) • Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled picture graphs and scaled bar graphs	1
3.MD.B.4: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch • Show the data by making a line plot, where the horizontal scale is marked off in appropriate units— whole numbers, halves, or quarters	1, 8
3.MD.C.5: Recognize area as an attribute of plane figures and understand concepts of area measurement: • A square with side length 1 unit,	2

called "a unit square," is said to have "one square unit" of area, and can be used to measure area. • A plane figure, which can be covered without gaps or overlaps by n unit squares, is said to have an area of n square units 3.MD.C.6: Measure areas by counting unit	2
squares (square cm, square m, square in, square ft, and improvised units)	
3.MD.C.7: Relate area to the operations of multiplication and addition: • Find the area of a rectangle with whole- number side lengths by tiling it and show that the area is the same as would be found by multiplying the side lengths • Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning • Use tiling to show in a concrete case that the area of a rectangle with whole- number side lengths a and b + c is the sum of a × b and a × c • Use area models to represent the distributive property in mathematical reasoning • Recognize area as additive. Find areas of rectilinear figures by decomposing them into	2, 4, 8

nonoverlapping rectangles and adding the areas of the non- overlapping parts, applying this technique to solve real world problems	
3.MD.D.8: Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters	7, 8
3.NBT.A.1: Use place value understanding to round whole numbers to the nearest 10 or 100	3
3.NBT.A.2: Using computational fluency, add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and the relationship between addition and subtraction	2, 3, 4, 7, 8
3.NBT.A.3: Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9 × 80, 5 × 60) using strategies based on place value and properties of operations	4, 7
3.NBT.A.4: Understand that the four digits of a four-digit number represent amounts of thousands, hundreds,	NOT ADDRESSED

tens, and ones (e.g., 7,706 can be portrayed in a variety of ways according to place value strategies)	
3.NBT.A.5: Read and write numbers to 10,000 using base-ten numerals, number names, and expanded form(s)	NOT ADDRESSED
3.NBT.A.6: Compare two four-digit numbers based on meanings of thousands, hundreds, tens, and ones digits using symbols (<, >, =) to record the results of comparisons	NOT ADDRESSED
3.NF.A.1: Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts For example: Unit fractions are fractions with a numerator of 1 derived from a whole partitioned into equal parts and having 1 of those equal parts (1/4 is 1 part of 4 equal parts). • Understand a fraction a/b as the quantity formed by a parts of size 1/b	5, 8
 3,NF.A.2: Understand a fraction as a number on the number line; represent fractions on a number line diagram Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the number 1/b 	5, 8

on the number line	
3.NF.A.3: Explain equivalence of fractions in special cases and compare fractions by reasoning about their size : • Understand two fractions as equivalent (equal) if they are the same size or the same point on a number line • Recognize and generate simple equivalent fractions (e.g., 1/2 = 2/4, 4/6 = 2/3) • Explain why the fractions are equivalent (e.g., by using a visual fraction model) • Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers (e.g., Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram) • Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols (>, =, <) and justify the conclusions (e.g., by using a visual fraction model)	5, 6, 8
3.OA.A.1: nterpret products of whole numbers (e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each)	1, 2, 8
3.OA.A.2: Interpret whole-number quotients of	4

whole numbers (e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each)	
3.OA.A.3: Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem)	1, 4, 6, 8
3.OA.A.4: Determine the unknown whole number in a multiplication or division equation relating three whole numbers	1, 4
3.OA.B.5: Apply properties of operations as strategies to multiply and divide	1, 2, 3, 4, 5
3.OA.B.6: Understand division as an unknown-factor problem	4, 8
3.OA.C.7: Using computational fluency, multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one know $40 \div 5 = 8$) or properties of operations • By the end of Grade 3, automatically (fact fluency) recall all	1, 3, 4, 5, 6, 7, 8

products of two one-digit numbers	
3.OA.D.8: Solve two-step word problems using the four operations, and be able to: • Represent these problems using equations with a letter standing for unknown quantity • Assess the reasonableness of answers using mental computation and estimation strategies including rounding	3, 4, 7, 8
3.OA.D.9: Identify arithmetic patterns (including, but not limited to, patterns in the addition table or multiplication table), and explain them using properties of operations	1, 2, 3, 4