New York State Testing Program # 2016 Common Core **Mathematics Test** Grade 3 Scoring Leader Materials Training Set #### 2-Point Holistic Rubric | 2 Point | A two-point response includes the correct solution to the question and demonstrates a thorough understanding of the mathematical concepts and/or procedures in the task. This response • indicates that the student has completed the task correctly, using mathematically sound procedures • contains sufficient work to demonstrate a thorough understanding of the mathematical concepts and/or procedures • may contain inconsequential errors that do not detract from the correct solution and the demonstration of a thorough understanding | |----------|--| | 1 Point | A one-point response demonstrates only a partial understanding of the mathematical concepts and/or procedures in the task. This response correctly addresses only some elements of the task may contain an incorrect solution but applies a mathematically appropriate process may contain the correct solution but required work is incomplete | | 0 Point* | A zero-point response is incorrect, irrelevant, incoherent, or contains a correct solution obtained using an obviously incorrect procedure. Although some elements may contain correct mathematical procedures, holistically they are not sufficient to demonstrate even a limited understanding of the mathematical concepts embodied in the task. | ^{*}Condition Code A is applied whenever a student who is present for a test session leaves an entire constructed-response question in that session completely blank (no response attempted). #### 3-Point Holistic Rubric #### Score Points: | 3 Point | A three-point response includes the correct solution(s) to the question and demonstrates a thorough understanding of the mathematical concepts and/or procedures in the task. This response • indicates that the student has completed the task correctly, using mathematically sound procedures • contains sufficient work to demonstrate a thorough understanding of the mathematical concepts and/or procedures • may contain inconsequential errors that do not detract from the correct solution(s) and the demonstration of a thorough understanding | |----------|---| | 2 Point | A two-point response demonstrates a partial understanding of the mathematical concepts and/or procedures in the task. This response • appropriately addresses most, but not all aspects of the task using mathematically sound procedures • may contain an incorrect solution but provides sound procedures, reasoning, and/or explanations • may reflect some minor misunderstanding of the underlying mathematical concepts and/or procedures | | 1 Point | A one-point response demonstrates only a limited understanding of the mathematical concepts and/or procedures in the task. This response • may address some elements of the task correctly but reaches an inadequate solution and/or provides reasoning that is faulty or incomplete • exhibits multiple flaws related to misunderstanding of important aspects of the task, misuse of mathematical procedures, or faulty mathematical reasoning • reflects a lack of essential understanding of the underlying mathematical concepts • may contain the correct solution(s) but required work is limited | | 0 Point* | A zero-point response is incorrect, irrelevant, incoherent, or contains a correct solution obtained using an obviously incorrect procedure. Although some elements may contain correct mathematical procedures, holistically they are not sufficient to demonstrate even a limited understanding of the mathematical concepts embodied in the task. | ^{*}Condition Code A is applied whenever a student who is present for a test session leaves an entire constructed-response question in that session completely blank (no response attempted). #### 2016 2-and 3-Point Mathematics Scoring Policies Below are the policies to be followed while scoring the mathematics tests for all grades: - If a student does the work in other than a designated "Show your work" area, that work should still be scored. (Additional paper is an allowable accommodation for a student with disabilities if indicated on the student's Individual Education Program or Section 504 Accommodation Plan.) - If the question requires students to show their work, and the student shows appropriate work and clearly identifies a correct answer but fails to write that answer in the answer blank, the student should still receive full credit. - In questions that provide ruled lines for students to write an explanation of their work, mathematical work shown elsewhere on the page should be considered and scored. - If the student provides one legible response (and one response only), teachers should score the response, even if it has been crossed out. - If the student has written more than one response but has crossed some out, teachers should score only the response that has not been crossed out. - Trial-and-error responses are not subject to Scoring Policy #5 above, since crossing out is part of the trial-and-error process. - If a response shows repeated occurrences of the same conceptual error within a question, the student should **not** be penalized more than once. - In questions that require students to provide bar graphs, - in Grades 3 and 4 only, touching bars are acceptable - in Grades 3 and 4 only, space between bars does not need to be uniform - in all grades, widths of the bars must be consistent - · in all grades, bars must be aligned with their labels - in all grades, scales must begin at 0, but the 0 does not need to be written - 9. In questions requiring number sentences, the number sentences must be written horizontally. - 10. In pictographs, the student is permitted to use a symbol other than the one in the key, provided that the symbol is used consistently in the pictograph; the student does not need to change the symbol in the key. The student may not, however, use multiple symbols within the chart, nor may the student change the value of the symbol in the key. - 11. If students are not directed to show work, any work shown will not be scored. This applies to items that do not ask for any work and items that ask for work for one part and do not ask for work in another part. - 12. Condition Code A is applied whenever a student who is present for a test session leaves an entire constructed-response question in that session completely blank (no response attempted). This is not to be confused with a score of zero wherein the student does respond to part or all of the question but that work results in a score of zero. Haley cut pieces of ribbon to make bookmarks. Each bookmark was $\frac{1}{8}$ foot long. Draw a point at $\frac{1}{8}$ on the number line below and label the point A. Haley placed 5 of the bookmarks end to end. Draw a point on the number line below to represent the total length of the 5 bookmarks. Label the point B. # **EXEMPLARY RESPONSE** Haley cut pieces of ribbon to make bookmarks. Each bookmark was $\frac{1}{8}$ foot long. Draw a point at $\frac{1}{8}$ on the number line below and label the point A. Haley placed 5 of the bookmarks end to end. Draw a point on the number line below to represent the total length of the 5 bookmarks. Label the point B. 45 Haley cut pieces of ribbon to make bookmarks. Each bookmark was $\frac{1}{8}$ foot long. Draw a point at $\frac{1}{8}$ on the number line below and label the point A. Haley placed 5 of the bookmarks end to end. Draw a point on the number line below to represent the total length of the 5 bookmarks. Label the point B. #### **Score Point 2 (out of 2 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. The section of the number line is correctly divided into 8 parts. Point A is correctly placed at the $\frac{1}{8}$ mark. Point B is placed correctly at $\frac{5}{8}$ on the number line. 45 ... 45 Haley cut pieces of ribbon to make bookmarks. Each bookmark was $\frac{1}{8}$ foot long. Draw a point at $\frac{1}{8}$ on the number line below and label the point A. Haley placed 5 of the bookmarks end to end. Draw a point on the number line below to represent the total length of the 5 bookmarks. Label the point B. # **Score Point 2 (out of 2 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. Point A is correctly placed at the $\frac{1}{8}$ mark. Point B is placed correctly at $\frac{5}{8}$ on the number line. 45 Haley cut pieces of ribbon to make bookmarks. Each bookmark was $\frac{1}{8}$ foot long. Draw a point at $\frac{1}{8}$ on the number line below and label the point A. Haley placed 5 of the bookmarks end to end. Draw a point on the number line below to represent the total length of the 5 bookmarks. Label the point B. # **Score Point 2 (out of 2 points)** This response demonstrates a
thorough understanding of the mathematical concepts in the task. Point A is correctly drawn at the $\frac{1}{8}$ mark. Point B is correct at $\frac{5}{8}$ on the number line. # **Score Point 1 (out of 2 points)** This response demonstrates a partial understanding of the mathematical concepts in the task. The segment of the first number line is correctly divided into 8 sections. Point A is correctly drawn at the $\frac{1}{8}$ mark. Point B is incorrect at $\frac{5}{5}$. Haley cut pieces of ribbon to make bookmarks. Each bookmark was $\frac{1}{8}$ foot long. Draw a point at $\frac{1}{8}$ on the number line below and label the point A. Haley placed 5 of the bookmarks end to end. Draw a point on the number line below to represent the total length of the 5 bookmarks. Label the point B. # **Score Point 1 (out of 2 points)** This response demonstrates a partial understanding of the mathematical concepts in the task. Point A is correctly drawn at the $\frac{1}{8}$ mark on the number line. Point B is incorrect. Although point B is labeled as $\frac{5}{8}$, it is placed at the $\frac{3}{4}$ mark. 45 Haley cut pieces of ribbon to make bookmarks. Each bookmark was $\frac{1}{8}$ foot long. Draw a point at $\frac{1}{8}$ on the number line below and label the point A. Haley placed 5 of the bookmarks end to end. Draw a point on the number line below to represent the total length of the 5 bookmarks. Label the point B. #### **Score Point 1 (out of 2 points)** This response demonstrates a partial understanding of the mathematical concepts in the task. Point A is incorrect. It is drawn at about the $\frac{1}{3}$ mark. Point B is correct at $\frac{5}{8}$ on the number line. 45 Haley cut pieces of ribbon to make bookmarks. Each bookmark was $\frac{1}{8}$ foot long. Draw a point at $\frac{1}{8}$ on the number line below and label the point A. Haley placed 5 of the bookmarks end to end. Draw a point on the number line below to represent the total length of the 5 bookmarks. Label the point B. # Score Point 0 (out of 2 points) This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Point A is incorrect; it is at the $\frac{1}{2}$ mark. Point B is incorrect at the $\frac{3}{4}$ mark. 45 Haley cut pieces of ribbon to make bookmarks. Each bookmark was $\frac{1}{8}$ foot long. Draw a point at $\frac{1}{8}$ on the number line below and label the point A. Haley placed 5 of the bookmarks end to end. Draw a point on the number line below to represent the total length of the 5 bookmarks. Label the point B. #### Score Point 0 (out of 2 points) This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Point A is incorrect at the $\frac{1}{2}$ mark. Point B is incorrect at the $\frac{1}{2}$ mark. 46 Katia received a sticker each time she picked up her toys. She placed some of the stickers on page 1 of her scrapbook, as shown below. Page 1 Write numbers in the blanks below to show two multiplication facts represented by the array of stickers on page 1 of her scrapbook. Katia placed the rest of the stickers on pages 2 and 3 of her scrapbook, as shown below. Page 2 Page 3 Complete the expression below to represent the total number of stickers on pages 2 and 3. # **EXEMPLARY RESPONSE** Katia received a sticker each time she picked up her toys. She placed some of the stickers on page 1 of her scrapbook, as shown below. Page 1 Write numbers in the blanks below to show two multiplication facts represented by the array of stickers on page 1 of her scrapbook. Katia placed the rest of the stickers on pages 2 and 3 of her scrapbook, as shown below. Page 2 Page 3 Complete the expression below to represent the total number of stickers on pages 2 and 3. Or other valid response. 46 Katla received a sticker each time she picked up her toys. She placed some of the stickers on page 1 of her scrapbook, as shown below. Page 1 Write numbers in the blanks below to show two multiplication facts represented by the array of stickers on page 1 of her scrapbook. $$\frac{4}{7} \times \frac{7}{4} = 28$$ Katia placed the rest of the stickers on pages 2 and 3 of her scrapbook, as shown below. Page 2 Page 3 Complete the expression below to represent the total number of stickers on pages 2 and 3. # **Score Point 2 (out of 2 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. Two correct multiplication facts are given to represent 28 stickers. The response provides a correct expression to represent the stickers on pages 2 and 3. 46 Katia received a sticker each time she picked up her toys. She placed some of the stickers on page 1 of her scrapbook, as shown below. Page 1 Write numbers in the blanks below to show two multiplication facts represented by the array of stickers on page 1 of her scrapbook. $$\frac{1}{4} \times \frac{4}{7} = \frac{28}{28}$$ Katia placed the rest of the stickers on pages 2 and 3 of her scrapbook, as shown below. Page 2 Page 3 Complete the expression below to represent the total number of stickers on pages 2 and 3. # **Score Point 2 (out of 2 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. Two correct multiplication facts are given to represent 28 stickers. The response provides a correct expression to represent the stickers on pages 2 and 3. 46 Katia received a sticker each time she picked up her toys. She placed some of the stickers on page 1 of her scrapbook, as shown below. Page 1 Write numbers in the blanks below to show two multiplication facts represented by the array of stickers on page 1 of her scrapbook. Katia placed the rest of the stickers on pages 2 and 3 of her scrapbook, as shown below. Page 2 Page 3 Complete the expression below to represent the total number of stickers on pages 2 and 3. # **Score Point 2 (out of 2 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. Two correct multiplication facts are given to represent 28 stickers. The response provides a correct expression to represent the stickers on pages 2 and 3. The response counts the number of stickers on each page, then adds them and finally multiplies by 1. 46 Katia received a sticker each time she picked up her toys. She placed some of the stickers on page 1 of her scrapbook, as shown below. Page 1 Write numbers in the blanks below to show two multiplication facts represented by the array of stickers on page 1 of her scrapbook. $$\frac{4 \times 7}{7 \times 4} = \frac{18}{18}$$ Katia placed the rest of the stickers on pages 2 and 3 of her scrapbook, as shown below. Page 2 Page 3 Complete the expression below to represent the total number of stickers on pages 2 and 3. # **Score Point 1 (out of 2 points)** This response demonstrates a partial understanding of the mathematical concepts in the task. Two correct multiplication facts are given to represent 28 stickers. The expression representing the number of stickers on pages 2 and 3 is incorrect. A mistake is made when multiplying (4+3) by 7 rather than 4. 46 Katia received a sticker each time she picked up her toys. She placed some of the stickers on page 1 of her scrapbook, as shown below. Page 1 Write numbers in the blanks below to show two multiplication facts represented by the array of stickers on page 1 of her scrapbook. Katia placed the rest of the stickers on pages 2 and 3 of her scrapbook, as shown below. Page 2 Page 3 Complete the expression below to represent the total number of stickers on pages 2 and 3. 1×(4+5) #### **Score Point 1 (out of 2 points)** This response demonstrates a partial understanding of the mathematical concepts in the task. Two incorrect multiplication facts are given. The response provides an incorrect answer for the number of stickers. The expression representing the number of stickers on pages 2 and 3 is correct. 46 Katla received a sticker each time she picked up her toys. She placed some of the stickers on page 1 of her scrapbook, as shown below. Page 1 Write numbers in the blanks below to show two multiplication facts represented by the array of stickers on page 1 of her scrapbook. $$\frac{4}{7} \times \frac{7}{4} = \frac{28}{28}$$ Katia placed the rest of the stickers on pages 2 and 3 of her scrapbook, as shown below. Page 2 Page 3 Complete the expression below to represent the total number of stickers on pages 2 and 3. 16 x(9+3) #### **Score Point 1 (out of 2 points)** This response demonstrates a partial understanding of the mathematical concepts in the task. Two correct multiplication facts are given to represent 28 stickers. The expression representing the number of stickers on pages 2 and 3 is incorrect (values 16 and 9 are incorrect). 46 Katia received a sticker each time she picked up her toys. She placed some of the stickers on page 1 of her scrapbook, as shown below. Page 1 Write numbers in the blanks below to show two multiplication facts represented by the array of stickers on page 1 of her scrapbook. Katia placed the rest of the stickers on pages 2 and 3 of her scrapbook, as shown below. Page 2 Page 3 Complete the expression below to represent the total number of stickers on pages 2 and 3. # Score Point 0 (out of 2 points) This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. One correct multiplication fact is given to represent 28 stickers. An incorrect expression is provided. This response does not have sufficient work to show even a limited understanding of the material. 46 Katla received a sticker each time she picked up her toys. She placed some of the stickers on page 1 of her scrapbook, as shown below. Page 1 Write numbers in the blanks below to show two multiplication facts represented by the array of stickers on page 1 of her scrapbook. Katia placed the rest of the stickers on pages 2 and 3 of her scrapbook, as shown below. Page
2 Page. Complete the expression below to represent the total number of stickers on pages 2 and 3. # Score Point 0 (out of 2 points) This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Two incorrect multiplication facts are given. The expression representing the number of stickers on pages 2 and 3 is incorrect. 47 Several students voted on their favorite sports activities. - · Eight students voted for basketball. - Three students voted for volleyball. - · Seven students voted for baseball. - · Four students voted for kickball. Complete the picture graph below to show the data. #### **FAVORITE SPORT ACTIVITY** | Activity | Number of Students | |------------|--------------------| | Basketball | 9 | | Volleyball | | | Baseball | | | Kickball | | | KEY | | |--------------|--| | = 2 students | | # **EXEMPLARY RESPONSE** | Four students voted for kickball. Complete the picture graph below to show the data. FAVORITE SPORT ACTIVITY Activity Number of Students Basketball | | | | | |---|----|--------------------|----------------------|---------------------------------| | Activity Number of Students | | | he picture graph bel | Complete the | | 10000 | | SPORT ACTIVITY | FAVORITE | A SCOTT THE POST OF THE POST OF | | Basketball OOO | ts | Number of Students | Activity | | | | | 0000 | Basketball | | | Volleyball (| | 0(| Volleyball | | | Baseball O O (| | 0000 | Baseball | | | Kickball | | 00 | Kickball | | # **Score Point 2 (out of 2 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. The data is correctly represented on the picture graph with circles and half-circles. 47 Several students vioted on their favorite sports activities. · Eight students voted for basketball. Three students vated for valleyball. Seven students voted for baseball. Four students voted for kickhall. Complete the picture graph below to show the data. **FAVORITE SPORT ACTIVITY** Number of Students Activity Basketball Volleyball Baseball Kickball KEY = 2 students #### **Score Point 2 (out of 2 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. The data is correctly represented on the picture graph with circles and half-circles. #### **Score Point 2 (out of 2 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. The data is correctly represented on the picture graph. Using C as an unshaded half-circle to represent 1 student is acceptable. 47 Several students voted on their favorite sports activities. Eight students voted for basketball. Three students valled for valleyball. Seven students voted for basebal. Four students voted for kickball. Complete the picture graph below to show the data. **FAVORITE SPORT A CTIVITY** Activity Nu mber of Students Baske thall Volley ball Base ball Kickball KEY = 2 students #### **Score Point 1 (out of 2 points)** This response demonstrates a partial understanding of the mathematical concepts in the task. The work is partially correct. The response provides an incorrect picture for the students that voted for volleyball: one circle is missing. The data for other activities is represented correctly. #### Score Point 1 (out of 2 points) This response demonstrates a partial understanding of the mathematical concepts in the task. The work is partially correct. The response provides incorrect pictures for students that voted for volleyball and kickball. There is one extra circle for volleyball and one missing circle for kickball. The data for other activities is represented correctly. # **Score Point 1 (out of 2 points)** This response demonstrates a partial understanding of the mathematical concepts in the task. The work is partially correct. The response incorrectly uses a different key (a square) to represent 1 student for volleyball and baseball activities. The data for other activities is represented correctly. #### **Score Point 0 (out of 2 points)** This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The response misunderstands the question and uses 1 circle to represent 1 student, resulting in incorrect work. 47 Several students voted on their favorite sports activities. Eight students voted for basketball. Three students voted for volleyball. Seven students voted for baseball. · Four students voted for kickball. Complete the picture graph below to show the data. **FAVORITE SPORT ACTIVITY** Activity Number of Students Baske thall Volleyball Baseball Kickball KEY = 2 students # **Score Point 0 (out of 2 points)** This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The work does not use the key to show the data. | 48 | Nadia had a strip of gr
paper into three pieces | een paper that was 18 inches long. She cut the green with equal lengths. | |----|--|--| | | | red paper that was 24 inches long. She cut the red paper
he same length as each cut piece of green paper. | | | When she was finished
Nadia have in total? | cutting, how many pieces of red and green paper did | | | Show your work. | Δηςωργ | nieces | ## **EXEMPLARY RESPONSE** | | Nadia had a strip of green paper that was 18 inches long. She cut the green paper into three pieces with equal lengths. | |---|--| | | She also had a strip of red paper that was 24 inches long. She cut the red paper into pieces that were the same length as each cut piece of green paper. | | | When she was finished cutting, how many pieces of red and green paper did Nadia have in total? | | 3 | Show your work. | | | 18 ÷ 3 = 6 | | | 24 ÷ 6 = 4 | | | 3 + 4 = 7 | | | | | | Or other valid response. | Answer 7 pieces | Nadia had a strip of green paper that was 18 inches long. She cut the green paper into three pieces with equal lengths. She also had a strip of red paper that was 24 Inches long. She cut the red paper into pieces that were the same length as each cut piece of green paper. When she was finished cutting, how many pieces of red and green paper did Nadia have in total? Show your work. Answer 7 pieces ### **Score Point 2 (out of 2 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. The response follows a correct procedure to determine the length of one piece of green paper and the number of 6 inches long red pieces. The total number of red and green pieces is calculated correctly. 48 Nadia had a strip of green paper that was 18 inches long. She cut the green paper into three pieces with equal lengths. She also had a strip of red paper that was 24 inches long. She cut the red paper into pieces that were the same length as each cut piece of green paper. When she was finished cutting, how many pieces of red and green paper did Nadia have in total? Show your work. Green 6 in Gin. 610 34-6-4 ### Score Point 2 (out of 2 points) pleces Answer This response demonstrates a thorough understanding of the mathematical concepts in the task. The response follows a correct procedure to determine the length of one piece of green paper and the number of 6 inches long red pieces. The total number of red and green pieces is calculated correctly. 48 Nadia had a strip of green paper that was (B)inches long. She cut the green paper into three pieces with equal lengths. She also had a strip of red paper that was 24 inches long. She cut the red paper into pieces that were the same length as each cut piece of green paper. When she was finished cutting, how many pieces of red and green paper did Nadia have in total? Show your work. Answer pleces ### Score Point 2 (out of 2 points) This response demonstrates a thorough understanding of the mathematical concepts in the task. The response follows a correct procedure to determine the total number of red and green pieces. 48 Nadia had a strip of green paper that was 18 inches long. She cut the green paper into three pieces with equal lengths. She also had a strip of red paper that was 24 inches long. She cut the red paper into pieces that were the same length as each cut piece of green paper. When she was finished cutting, how many pieces of red and green paper did Nadia have in total? Show your work. 18:326 24+4-6 46 Answer λ, pleces ### **Score Point 1 (out of 2 points)** This response demonstrates a partial understanding of the mathematical concepts in the task. The response follows a correct procedure to determine the length of one piece of green paper. An error is made when determining the number of red pieces (24 is divided by 4 rather than by 6). The work for determining the total number of red and green pieces is incorrect: the length of green pieces is added to the number of red pieces. The response addresses some elements of the task correctly. 48 Nadia had a strip of green paper that was 18 inches long. She cut the green paper into three pieces with equal lengths. She also had a strip of red paper that was 24 Inches long. She cut the red paper into pieces that were the same length as each cut piece of green paper. When she was finished cutting, how many pieces of red and green paper did Nadia have in total? Show your work. 18:3-6+ 24-3-8 Answer 19 place ### Score Point 1 (out of 2 points) This response demonstrates a partial understanding of the
mathematical concepts in the task. The response follows a correct procedure to determine the length of one piece of green paper. A mistake is made when determining the number of red pieces (24 is divided by 3 rather than by 6). Another mistake occurs when determining the total number of red and green pieces: the length of a green piece is added to the number of red pieces. The response addresses some elements of the task correctly. 48 Nadia had a strip of green paper that was 18 inches long. The cut the green paper into three pieces with equal lengths. She also had a strip of red paper that was 24 inches leng. She cut the red paper into pieces that were the same length as cach cut piece of green paper. When she was finished cutting, how many pieces of red and green paper did Nadia have in total?) Show your work. Answer 1 pieces ### **Score Point 1 (out of 2 points)** This response demonstrates a partial understanding of the mathematical concepts in the task. The response follows a correct procedure to determine the length of one piece of green paper and the number of red pieces. A mistake is made when calculating the total number of pieces: the length of a green piece is added to the number of red pieces, resulting in an incorrect answer. 48 Nadla had a strip of green paper that was 18 inches long. She cut the green paper into three pieces with equal lengths. She also had a strip of red paper that was 24 inches long. She cut the red paper into pieces that were the same length as each cut piece of green paper. When she was finished cutting, how many pieces of red and green paper did Nadia have in total? Show your work. 3+3=6 inches 3×2=6 inches Answer pieces ### Score Point 0 (out of 2 points) This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The response provides two incorrect procedures to determine the length of a piece of paper. There is no work for determining the number of red pieces. 48 Nadia had a strip of green paper that was 18 inches long. She cut the green paper into three pieces with equal lengths. She also had a strip of red paper that was 24 inches long. She cut the red paper into pieces that were the same length as each cut piece of green paper. When she was finished cutting, how many pieces of red and green paper did Nadia have in total? Show your work. 124 2 240cts Answer 42 pleces ### Score Point 0 (out of 2 points) This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The work for determining the total number of pieces is incorrect. The response is adding the lengths of the two strips rather than the quantities of pieces by color. | T [| . The shaded squ | ares below si | | , section. | |----------------|------------------|----------------|----------------|----------------------| | | | | | | | | | | | | | 9 yards | | | | | | | | | | | | | | | | KEY | | | | | | = 1 square yard | | | — 7 yards — | - | | | | What is the to | | re yards, of N | Ir. Nuccio's s | andwich shop after t | | Show your v | # **EXEMPLARY RESPONSE** Mr. Nuccio's sandwich shop was 9 yards long and 7 yards wide before he added a new section. The shaded squares below show the new section. KEY = 1 square yard What is the total area, in square yards, of Mr. Nuccio's sandwich shop after the new section was added? Show your work. Area = $$a(b+c)$$ = $ab+ac$ = $9(7+3)$ = 9×10 = 90 OR = $(9 \times 7) + (9 \times 3)$ = $63 + 27$ = 90 Or other valid response. Answer 90 square yards ### **Score Point 2 (out of 2 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. The original area and the area of the new section are correctly calculated and added to determine the total area. ### **Score Point 2 (out of 2 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. The new width of the shop is correctly calculated and then multiplied to determine the total area. ### **Score Point 2 (out of 2 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. The original area and the area of the new section are correctly calculated and added to determine the total area. Although the answer is incorrectly transcribed from the work to the answer blank, this is considered an inconsequential error that does not detract from the correct solution. ### **Score Point 1 (out of 2 points)** This response demonstrates only a partial understanding of the mathematical concepts of the task. Although the original area is correctly calculated, the area of the new section is incorrectly found through addition rather than multiplication. The response correctly addresses only some elements of the task. ### **Score Point 1 (out of 2 points)** This response demonstrates only a partial understanding of the mathematical concepts of the task. Although the area of the new section is correctly computed, no attempt is made to calculate and include the original area of the shop. The response correctly addresses only some elements of the task. ### Score Point 1 (out of 2 points) This response demonstrates only a partial understanding of the mathematical concepts of the task. Although the original area and the area of the new section are correctly calculated, no attempt is made to add them to determine the total area. The response correctly addresses only some elements of the task. | 11 | | | | | |-------------|------------------|-----------------|--------------|------------------------| | | | | | | | 9 yards | | | | | | | | | | | | | | | 41 | KEY | | - 11 | | | + | = 1 square yard | | ↓ | 7 yards — | | | | | What is th | 8 | are vards of A | Ar Nuccio's | sandwich shop after ti | | new section | on was added? | are yaras, or n | m. reducio s | salidation stop ever t | | Show you | ur work. | | | | | | Page Commence 15 | 200 | 3 | | | | 9 V D - | 450 | | | | | 9 × 3 = | | | | ### Score Point 0 (out of 2 points) While an attempt is made to determine the area of the new section, a calculation error $(9 \times 3 = 25)$ results in an incorrect value. Additionally, no attempt is made to calculate and include the original area of the shop. Holistically, the response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. ### Score Point 0 (out of 2 points) While an attempt is made to determine the original area through a visual representation of the multiplication, a calculation error $(9 \times 7 = 53)$ results in an incorrect value. Additionally, no attempt is made to calculate and include the area of the new section. Holistically, the response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. | _ | 4 | | |---|---|----| | 3 | U | V, | Sharon wants to make key chains with different-colored beads, as shown below. #### **KEY CHAIN** Each key chain will look the same. Sharon will use a total of 20 green beads to make all her key chains. What is the number of red beads and the number of blue beads she will need to make all of the key chains? Show your work. Answer _____ red beads _____blue beads ### **EXEMPLARY RESPONSE** Sharon wants to make key chains with different-colored beads, as shown below. 50 KEY CHAIN Blue Green Red Beads Beads Beads Each key chain will look the same. Sharon will use a total of 20 green beads to make all her key chains. What is the number of red beads and the number of blue beads she will need to make all of the key chains? Show your work. chain = 4 green + 3 red + 6 blue green = 20 beads ÷ 4 beads per chain x = 5 chains $red = 5 \times 3 = 15$ blue = $5 \times 6 = 30$ Or other valid response Answer _____15 ____ red beads 30 blue beads ### Score Point 3 (out of 3 points) This response demonstrates a thorough understanding of the mathematical concepts in the task. The correct number of key chains to be made is calculated and correctly multiplied by the numbers of red and blue beads per chain. | 50 | Sharon wants to make key chains with different-colored beads, as shown below. | |----|--| | | KEY CHAIN | | | Green Red Blue Beads Beads | | | ()CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC | | | Each key chain will look the same. Sharon will use a total of 20 green beads to make all her key chains. What is the number of red beads and the number of blue beads she will need to make all of the key chains? | | | Show your work. | | | | | | 6x5=30 3x5=15 4x5=20 bace red 4 beads beads green beads | | | Answer 15 red beads 30 blue beads | ### Score Point 3 (out of 3 points) This response demonstrates a thorough understanding of the mathematical concepts in the task. The number of key chains to be made is correctly multiplied by the numbers of red and blue beads per chain. A multiplication by the number of green beads per chain sufficiently verifies the correct number of key chains to use 20 total green beads. ### Score Point 3 (out of 3 points) This response demonstrates a thorough understanding of the mathematical concepts in the task. The number of key chains to be made is correctly multiplied by the numbers of red and blue beads per chain. No work is shown to derive the value of 5 key chains; however, this step is acceptable to be performed mentally. ### Score Point 2 (out of 3 points) This response demonstrates a partial understanding of the mathematical concepts in the task. Repeated addition is used to correctly calculate the total number of each color of beads; however, the answers are transcribed onto the wrong answer blanks and the work does not label which column is for which color of bead. Although the response
contains an incorrect solution, it uses a mathematically sound procedure. ### Score Point 2 (out of 3 points) This response demonstrates a partial understanding of the mathematical concepts in the task. Cumulative addition of green beads shows the correct total number of key chains and the correct solutions are provided; however, no intermediate work is shown to link these steps. The response addresses most, but not all aspects of the task. ### Score Point 2 (out of 3 points) This response demonstrates a partial understanding of the mathematical concepts in the task. The number of key chains to be made is correctly multiplied by the number of red and blue beads per chain; however, the answers are transposed in both the work and the answer blanks. Although the response contains an incorrect solution, it uses a mathematically sound procedure. ### **Score Point 1 (out of 3 points)** This response demonstrates only a limited understanding of the mathematical concepts in the task. Although the response contains correct solutions, the required work is limited. Presumably the number 5 is meant to represent the number of key chains to be made but no other work exists to provide context to assess the response. 50 Sharon wants to make key chains with different-colored beads, as shown below. #### **KEY CHAIN** Each key chain will look the same. Sharon will use a total of 20 green beads to make all her key chains. What is the number of red beads and the number of blue beads she will need to make all of the key chains? Show your work. ### Score Point 1 (out of 3 points) This response demonstrates only a limited understanding of the mathematical concepts in the task. Although the response contains correct solutions, the required work is limited. The work only repeats the final solutions and the value of 20 green beads from the prompt. ### **Score Point 1 (out of 3 points)** This response demonstrates only a limited understanding of the mathematical concepts in the task. Although the response contains correct solutions, the required work is limited. The work only repeats the final solutions and the value of 20 green beads from the prompt. ### Score Point 0 (out of 3 points) This response is irrelevant and is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The numbers of red and blue beads per chain are inappropriately added to the total number of green beads on all key chains. 50 Sharon wants to make key chains with different-colored beads, as shown below. #### **KEY CHAIN** Each key chain will look the same. Sharon will use a total of 20 green beads to make all her key chains. What is the number of red beads and the number of blue beads she will need to make all of the key chains? Show your work. Answer 7 red beads blue beads ### Score Point 0 (out of 3 points) This response is irrelevant and is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Random addition is used with no relation to the correct procedure of the problem. | A | В | C | |---|---|---| # **EXEMPLARY RESPONSE** | 1/2 = 3/6 and 2/4 since each fraction may be reduced to simple form 1/2. Or other valid response. | Α | В | C | |--|--------------------------------|-----------------------|------------------------| | | 1/2 - 2/5 and 2/4 since each f | | | | | | raction may be reduce | eu to simple form 1/2. | | | | | | ### **Score Point 3 (out of 3 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. The models are appropriately shaded and the explanation correctly identifies that all fractions reduce to $\frac{1}{2}$. ### **Score Point 3 (out of 3 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. The models are appropriately shaded and the explanation correctly identifies that all fractions reduce to $\frac{1}{2}$. #### **Score Point 3 (out of 3 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. The models are appropriately shaded and the explanation correctly identifies that all fractions reduce to $\frac{1}{2}$. ## **Score Point 2 (out of 3 points)** This response demonstrates a partial understanding of the mathematical concepts in the task. Two of the models are appropriately shaded by $\frac{1}{2}$; however, the third model is only shaded by $\frac{1}{4}$. The explanation, while not strong, does convey the concept of all fractions reducing to an equal value. The response correctly addresses most, but not all aspects of the task. Shade the models below to show 3 equivalent fractions and explain why they are equivalent. A B C They ark equivalent because they make a fraction for example A is \$\frac{1}{2}, Bis \frac{3}{6} and C is \frac{3}{4}. #### Score Point 2 (out of 3 points) This response demonstrates a partial understanding of the mathematical concepts in the task. Two of the models are appropriately shaded by $\frac{1}{2}$; however, the third model is shaded by $\frac{3}{4}$. The explanation does not sufficiently address the equivalence of all three fractions, but it is consistent with how the models were shaded. The response reflects some minor misunderstanding of the underlying concepts in the task. #### **Score Point 2 (out of 3 points)** This response demonstrates a partial understanding of the mathematical concepts in the task. Two of the models are appropriately shaded by $\frac{1}{2}$; however, the first model is not shaded. The explanation correctly addresses the equivalence of the models that were shaded. The response correctly addresses most, but not all aspects of the task. #### **Score Point 1 (out of 3 points)** This response demonstrates only a limited understanding of the mathematical concepts in the task. The models and explanation inappropriately equate only the numerators of fractions (total number of sections shaded). The response reflects a lack of essential understanding of the underlying concepts in the task. #### **Score Point 1 (out of 3 points)** This response demonstrates only a limited understanding of the mathematical concepts in the task. Two of the models are appropriately shaded by $\frac{1}{2}$; however, the third model is shaded by $\frac{3}{4}$. Additionally, the explanation inappropriately equates only the total number of shaded sections (corresponding to only the numerator of a fraction). The response reflects a lack of essential understanding of the underlying concepts. Shade the models below to show 3 equivalent fractions and explain why they are equivalent. B C They all are equivalent because all are shaded in four. #### **Score Point 1 (out of 3 points)** This response demonstrates only a limited understanding of the mathematical concepts in the task. Two of the models are appropriately shaded wholly and equivalently; however, the second model is shaded by $\frac{4}{6}$. Additionally, the explanation inappropriately equates only the total number of shaded sections (corresponding to only the numerator of a fraction). The response reflects a lack of essential understanding of the underlying concepts. #### **Score Point 0 (out of 3 points)** This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Only a single model is shaded and the explanation is incoherent. #### Score Point 0 (out of 3 points) Although the explanation mentions comparing numerators and denominators, the numbers below the answer inappropriately show the total number of sections in each diagram as the numerator when they should be in the denominator, and the denominators are all 1. In addition, no models are shaded. Holistically, the response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. | 52 | There were 80 adults and 20 children at a school play. The school collected \$8 for each adult's ticket and \$3 for each child's ticket. The school donated \$125 of the money from tickets to a local theater program and used the remaining money to buy supplies for next year's school play. | |----|--| | | How much money does the school have to buy supplies for next year's play? | | | Show your work. | Answar \$ | | 1 | ANSWORX | ### **EXEMPLARY RESPONSE** There were 80 adults and 20 children at a school play. The school collected \$8 for each adult's ticket and \$3 for each child's ticket. The school donated \$125 of the money from tickets to a local theater program and used the remaining money to buy supplies for next year's school play. How much money does the school have to buy supplies for next year's play? Show your work. $80 \times 8 = 640$ $20 \times 3 = 60$ 640 + 60 = 700 700 - 125 = 575 OR other valid response Answer \$ 575 52 There were 80 adults and 20 children at a school play. The school collected \$8 for each adult's ticket and \$3 for each child's ticket. The school donated \$125 of the money from tickets to a local theater program and used the remaining money to buy supplies for next year's school play. How much money does the school have to buy supplies for next year's play? Show your work. #### Score Point 3 (out of 3 points) This response demonstrates a thorough understanding of the mathematical concepts in the task. The ticket revenue is correctly calculated and the donation amount subtracted to determine the remaining money. #### **Score Point 3
(out of 3 points)** This response demonstrates a thorough understanding of the mathematical concepts in the task. The ticket revenue is correctly calculated and the donation amount subtracted to determine the remaining money. 52 There were 80 adults and 20 children at a school play. The school collected \$8 for each adult's ticket and \$3 for each child's ticket. The school donated \$125 of the money from tickets to a local theater program and used the remaining money to buy supplies for next year's school play. How much money does the school have to buy supplies for next year's play? Show your work. 8×80=010 ### Score Point 3 (out of 3 points) This response demonstrates a thorough understanding of the mathematical concepts in the task. The ticket revenue is correctly calculated and the donation amount subtracted to determine the remaining money. There were 80 adults and 20 children at a school play. The school collected \$8 52 for each adult's ticket and \$3 for each child's ticket. The school donated \$125 of the money from tickets to a local theater program and used the remaining money to buy supplies for next year's school play. How much money does the school have to buy supplies for next year's play? Show your work. #### Score Point 2 (out of 3 points) This response demonstrates a partial understanding of the mathematical concepts in the task. The ticket revenue is calculated and the donation amount correctly subtracted to determine the remaining money; however, a calculation error when determining the revenue $(20 \times 3 = 50)$ results in an incorrect final solution. Although the solution is incorrect, appropriate and mathematically sound procedures were used. 52 There were 80 adults and 20 children at a school play. The school collected \$8 for each adult's ticket and \$3 for each child's ticket. The school donated \$125 of the money from tickets to a local theater program and used the remaining money to buy supplies for next year's school play. How much money does the school have to buy supplies for next year's play? Show your work. Answer \$ 5 | 5 #### Score Point 2 (out of 3 points) This response demonstrates a partial understanding of the mathematical concepts in the task. The ticket revenue is correctly calculated and the donation amount subtracted to determine the remaining money; however, a calculation error during the subtraction (700 - 125 = 515) results in an incorrect final solution. Although the solution is incorrect, appropriate and mathematically sound procedures were used. 52 There were 80 adults and 20 children at a school play. The school collected \$8 for each adult's ticket and \$3 for each child's ticket. The school donated \$125 of the money from tickets to a local theater program and used the remaining money to buy supplies for next year's school play. How much money does the school have to buy supplies for next year's play? #### **Score Point 2 (out of 3 points)** This response demonstrates a partial understanding of the mathematical concepts in the task. The ticket revenue is correctly calculated; however, no attempt is made to subtract the donation amount to determine the remaining money. The response addresses most, but not all aspects of the task. There were 80 adults and 20 children at a school play. The school collected \$8 52 for each adult's ticket and \$3 for each child's ticket. The school donated \$125 of the money from tickets to a local theater program and used the remaining money to buy supplies for next year's school play. How much money does the school have to buy supplies for next year's play? Show your work. ## Score Point 1 (out of 3 points) This response demonstrates only a limited understanding of the mathematical concepts in the task. The donation amount is correctly subtracted from ticket revenue; however, the value of \$600 is an incorrect amount from a calculation error $(8 \times 80 = 600)$ that additionally does not include revenue from the children's tickets. The response correctly addresses only some elements of the task. 52 There were 80 adults and 20 children at a school play. The school collected \$8 for each adult's ticket and \$3 for each child's ticket. The school donated \$125 of the money from tickets to a local theater program and used the remaining money to buy supplies for next year's school play. How much money does the school have to buy supplies for next year's play? Show your work. Answer \$ 900_ #### **Score Point 1 (out of 3 points)** This response demonstrates only a limited understanding of the mathematical concepts in the task. Revenue from child's tickets is correctly calculated; however, a calculation error when determining the revenue from adult's tickets $(80 \times 8 = 840)$ results in an incorrect value for total revenue. Additionally, no attempt is made to subtract the donation amount to determine the remaining money. The response correctly addresses only some elements of the task. 52 There were 80 adults and 20 children at a school play. The school collected \$8 for each adult's ticket and \$3 for each child's ticket. The school donated \$125 of the money from tickets to a local theater program and used the remaining money to buy supplies for next year's school play. How much money does the school have to buy supplies for next year's play? Show your work. 20x3=60 80x8= 60+1,000=1,060 #### Score Point 1 (out of 3 points) This response demonstrates only a limited understanding of the mathematical concepts in the task. Revenue from child's tickets is correctly calculated; however, a calculation error when determining the revenue from adult's tickets ($80 \times 8 = 1000$) results in an incorrect value for total revenue. The donation is then subtracted correctly to obtain the answer of \$935, but this step is not shown. The response addresses some elements of the task correctly but reaches an inadequate solution based on faulty and incomplete reasoning. There were 80 adults and 20 children at a school play. The school collected \$8 for each adult's ticket and \$3 for each child's ticket. The school donated \$125 of the money from tickets to a local theater program and used the remaining money to buy supplies for next year's school play. How much money does the school have to buy supplies for next year's play? Show your work. Answer \$ 36 #### Score Point 0 (out of 3 points) This response is irrelevant and not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The two costs per ticket type are inappropriately added together and then added to the donation amount. 52 There were 80 adults and 20 children at a school play. The school collected \$8 for each adult's ticket and \$3 for each child's ticket. The school donated \$125 of the money from tickets to a local theater program and used the remaining money to buy supplies for next year's school play. How much money does the school have to buy supplies for next year's play? Show your work ### Score Point 0 (out of 3 points) This response is irrelevant and not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The two costs per ticket type are inappropriately added together and the total number of attendees calculated.