3rd Grade Georgia Milestone Study Guide

Numbers and Operations

Place Value

2	Ten
	thousands
6	thousands
•	
7	hundreds
5	tens
9	ones
•	decimal
3	tenths

Twenty six thousand, seven hundred fifty nine and three tenths

20,000 + 6,000 + 700 + 50 + 9 + 0.3

 $(2\times10,000) + (6\times1,000) + (7\times100) + (5\times10) + (9\times1) + (3\times0.1)$

How many tens are in 750? There is a five in the tens place, but it takes 75 tens to make the number 750, so

Estimation

329 + 175 =

329 is about 300 and 175 is about 200, so the answer is about 500 488 - 87 =

488 is about 500 and 87 is about 100, so the answer is about 400

Making Change with fewest coins

Multiplication

Area Model

Multiplying by multiples of 10 $6\times7=42$ so... $\underline{6}0\times\underline{7}=\underline{42}0$ $2\times15=30$ so... $\underline{2}0\times\underline{15}0=\underline{3.0}00$

Partial Products

39	30 + 9
<u>x 4</u>	<u>x 4</u>
	36 (4 x 9)
	+ 120 (4 × 30)

Estimation

537 Estimate: x 8 500 x 8 = 4,000

The product will be about 4,000

Identity Property of Multiplication

- Any number multiplied by 1 will keep its original value.
- $23 \times 1 = 23$, $1 \times 8 = 8$

Associative Property of Multiplication

- When multiplying any 3 numbers, changing the grouping does not change the product.
- (3 x 4)5 3(4 x 5) 12 x 5 = 60 3 x 20 = 60

Commutative Property of Multiplication

- When multiplying any 2 or more numbers, changing the order does not change the product.
- 3 · 4 = 4 · 3 12 = 12

Division

Division is the inverse of multiplication $12 \div 4 = 3$ and $4 \times 3 = 12$

Division can be thought of as repeated 156

subtraction

15-3-3-3-3=0 so 15÷3=5

Division with a remainder

Joe and his two friends wanted to share 10 apples. How many apples did each person get? Were there any left over?

Fractions

numerator

This tells how many parts you have out of the whole.

denominator

This tells how many parts make up the whole.

<u>Common fractions</u> are seen and used on a daily basis. Examples: 1/4, 2/3

<u>Decimal fractions</u> have a denominator of 10 and can be written as a decimal.

Examples:

3/10 = 0.3

7/10 = 0.7

Adding and Subtracting Fractions with like denominators

2/6

3/6

5/6

10/10 - 3/10

7/10

3/8 + 4/8 = 7/8

Measurement

elapsed time

kilometer (km) 1 kilometer 1 mile metric unit of length 1 kilometer = 0.6 miles

Measure to the nearest quarter inch and half inch

You would use <u>kilometers</u> to measure the height of a building, but you would use <u>millimeters</u> to measure the length of a ladybug.

(metric unit for measuring length)

The door into your classroom is slightly smaller than a meter wide.

(metric unit for measuring length and distance)

Perimeter is summing the lengths of the sides.

Area 9 sq units

Area is the amount of surface space that a flat object has. Area is reported in the amount of square units.

Geometry

All three sides have different lengths

At least two equal sides and two equal angles

equilateral triangle

Three equal sides and three equal angles

right angle

(an angle whose measure is exactly 90°)

acute angle

(an angle whose measure is smaller than 90°)

obtuse angle

(an angle whose measure is larger than 90°)

Diameter: A line segment passing through the center of a circle with endpoints on the circle.

Radius: The distance from the center of a circle to any point on the circle.

Vertex: The common endpoint of two line segments that serve as two sides of a polygon. (plural: vertices)

Algebra

- Patterns can be numerical EX: 2,4,6,8
- Patterns might be geometrical as a tile pattern on the floor with 2 blue tiles followed by 1 white tile
- Patterns may also be alternating EX: 1,5,
 2,6,3,7,4 (add 4, subtract 3).

??? 3 = 20 or D + D = 20

Growing Pattern

$$\stackrel{\frown}{\wedge}$$
 $\stackrel{\frown}{\wedge}$

<u>Data Analysis and</u> <u>Probability</u>

- Bar graph: A way of displaying data using horizontal or vertical bars so that the height or length of the bars indicates its value.
- Venn Diagram: A diagram using circles or other shapes, to show the relationship between sets.
 Often used in comparing and contrasting.
- Pictograph: A graph in which the data is displayed in a table using pictures or symbols, often using a key to explain what the picture represents.
- Scale: the intervals that the data will count up
- Line Plot: also called a dot plot, uses an "x" to show a piece of data