Functions and Relations

Terms to Know:

- © Relation: Any set of ordered pairs. Example: (2, 3) (4, 7) (5, 9) (4, 1)
- © Function: A relation such that every single input has exactly one output. This means that every x-value has its own y-value. One x-value can't have 2 Example: (2, 3) (4, 7) (5, 9) (7, 11) different y-values.

Here are a few examples:

Input the number of seconds after the starting gun in a race to get an output of the number of meters the runner has covered.

Race Chart - function

Number of Seconds (input)	1	4	7	8
Meters Covered (output)	5	20	35	40

Table - function							
x (input)	-3	0	7	8			
y (output)	-9	-6	1	2			

The rule about only one output each time is crucial and must not be violated.

Not a Function

input	3	2	0	3
output	4	-1	2	-3

Notice that there are 2 x-values of 3.

Why is this not a function?

- © Each input must have _____ output.
- Look at the graph....The vertical line test: <u>No</u> vertical line can pass through more than one point on the graph.

Examples: Are these relations functions? Use the vertical line test!

Use the coordinate planes below and draw a graph that will meet the requirements.

So...one more time...

What is a function?

How can we tell if a relation is a function?