## Warm Up

Describe your bid ideas (what you learned) about triangles during last weeks activity with the straws and coffee filters.



#### Learn to identify various threedimensional figures.

- Face a flat surface of a three-dimensional figure.
- Edge where two faces meet

- Polygon a closed plane figure formed by 3 or more line segments.
- Polyhedron a three-dimensional figure whose faces are all polygons.
- Vertex a point where three or ore edges meet.
- Base the face that is used to name a polyhedron.

# A prism has 2 bases, and a pyramid has one base.

- A **prism** is a polyhedron that has two parallel, congruent bases. The bases can be any polygon. The other faces are parallelograms.
- A **pyramid** is a polyhedron that has one base. The base can be any polygon. The other faces are triangles.





#### **Additional Example 1A: Naming Prisms and Pyramids**

#### Identify the bases and faces of the figure. Then name the figure.



There are two octagonal bases.

There are eight rectangular faces.

The figure is an octagonal prism.

#### **Additional Example 1B: Naming Prisms and Pyramids**

#### Identify the bases and faces of the figure. Then name the figure.

![](_page_5_Figure_2.jpeg)

There is one base, and it is a pentagon.

There are five triangular faces.

The figure is a pentagonal pyramid.

Other three-dimensional figures include *cylinders* and *cones*. These figures are not polyhedrons because they are not made of faces that are all polygons.

![](_page_6_Figure_1.jpeg)

# You can use properties to classify threedimensional figures.

video

![](_page_7_Figure_2.jpeg)

#### Additional Example 2A: Classifying Three-Dimensional Figures

# Classify each figure as a polyhedron or not a polyhedron. Then name the figure.

![](_page_8_Figure_2.jpeg)

The faces are all polygons, so the figure is a polyhedron.

*There is one rectangular base for each figure.* 

The figure is made up of a rectangular pyramid and a rectangular prism.

#### Additional Example 2B: Classifying Three-Dimensional Figures

# Classify each figure as a polyhedron or not a polyhedron. Then name the figure.

![](_page_9_Picture_2.jpeg)

There is one circular base.

The figure is a cone.

#### Lesson Quiz: Part I

#### Identify the bases and faces of each figure. Then name each figure.

![](_page_10_Picture_2.jpeg)

One square base, 4 triangular faces; square pyramid

![](_page_10_Picture_4.jpeg)

Two pentagon bases, 5 rectangular faces; pentagonal prism

#### **Lesson Quiz: Part II**

# Classify each figure as a polyhedron or not a polyhedron. Then name the figure.

![](_page_11_Figure_2.jpeg)

polyhedron, rectangular prism

![](_page_11_Figure_4.jpeg)

polyhedron, triangular prism

## **Cross-Sections of 3-D Figures**

# <u>Cross-Section</u> – is a view of the inside of a three-dimensional figure after it is sliced.

![](_page_12_Picture_2.jpeg)

![](_page_12_Picture_3.jpeg)

You will visualize planes cutting across a 3-D figure. If the object has a base you can cut it the following ways.

Parallel to base –

Perpendicular to base –

![](_page_13_Picture_4.jpeg)

![](_page_13_Picture_5.jpeg)

Describe the cross-sections seen when a rectangular prism is cut

Parallel to base – Square

Cross Section

Perpendicular to base Rectangle

![](_page_14_Picture_5.jpeg)

Tilted/Diagonal to base – Parallelogram

![](_page_14_Figure_7.jpeg)

Describe the cross-section seen when a cone is cut..

- Parallel to base
  - $\circ$  Circle
- Perpendicular to base –
   Triangle
- Diagonal to base –
   Ellipse (oval)

![](_page_15_Picture_6.jpeg)

- Describe the cross-section seen when a Square Pyramid is cut...
- Parallel to base -
  - Square

![](_page_16_Figure_4.jpeg)

- Perpendicular to base -
  - Triangle

![](_page_16_Figure_7.jpeg)

- Diagonal to base
  - Trapezoid

![](_page_16_Picture_10.jpeg)

Describe the cross-section seen when a sphere is cut...video \*Parallel to base -\*Circle

Perpendicular to base –
 Circle

![](_page_17_Figure_3.jpeg)

Diagonal to base –
Circle