

Warm UP

Workbook Pg. 63 Explore A and B

Essential Question:

How can you use properties of exponents to simplify expressions?

MCC8.EE.1:

Know and apply the properties of integer exponents to generate equivalent numerical expressions.

Exponents Song

my.hrw.com/math14/ga/msm/student/osp/g8/data/unit02/mod03/lesson02/exploration_core_lesson.pdf

Complete the following equation: $\frac{4^5}{4^3} = \frac{4 \cdot 4 \cdot 4 \cdot 4}{4 \cdot 4 \cdot 4} = \frac{4 \cdot 4 \cdot 4 \cdot 4}{4 \cdot 4 \cdot 4} = 4 \cdot 4 = 4$

What pattern do you see when dividing two powers with the same base?

Use your pattern to complete this equation: $\frac{6^8}{6^3} = 6$

Conjecture Write a general rule for the result of $\frac{a^m}{a^n}$.

Complete the following equations:

$$(5^3)^2 = (5 \cdot 5 \cdot 5)$$

= $(5 \cdot 5 \cdot 5) \cdot (5 \cdot 5 \cdot 5)$
= 5

Use your pattern to complete this equation: $5^2 \cdot 5^5 = 5$

Conjecture Write a general rule for the result of $a^m \cdot a^n$.

Complete the following equation: $\frac{4^5}{4^3} = \frac{4 \cdot 4 \cdot 4 \cdot 4}{4 \cdot 4 \cdot 4} = \frac{4 \cdot 4 \cdot 4 \cdot 4}{4 \cdot 4 \cdot 4} = 4 \cdot 4 = 4$

What pattern do you see when dividing two powers with the same base?

Use your pattern to complete this equation: $\frac{6^8}{6^3} = 6$

Conjecture Write a general rule for the result of $\frac{a^m}{a^n}$.

Complete the following equations:

$$(5^3)^2 = (5 \cdot 5 \cdot 5)$$

= $(5 \cdot 5 \cdot 5) \cdot (5 \cdot 5 \cdot 5)$
= 5

.hrw.com/math14/ga/msm/student/osp/g8/data/unit02/mod03/lesson02/exploration_core_lesson.pdf

Module 3

What pattern do you see when raising a power to a power?

Use your pattern to complete this equation: $(7^2)^4 = 7$

Conjecture Write a general rule for the result of $(a^m)^n$.

TRY THIS!

Use properties of exponents to write an equivalent expression.

1a.
$$9^2 \cdot 9^4$$

1b.
$$\frac{12^{22}}{12^4}$$

d.
$$\frac{6^9}{6^{12}}$$

MCC8.EE.1

EXAMPLE Applying Properties of Integer Exponents

Simplify each expression.

A
$$(5-2)^5 \cdot 3^{-8} + (5+2)^0$$

$$(5-2)^5 \cdot 3^{-8} + (5+2)^0$$
 Follow the order of operations.

$$\binom{1}{3^{-8}} \cdot \binom{1}{3^{-8}} + \binom{1}{3^{-8}}$$

Simplify within parentheses.

MULTIPLYING POWERS WITH THE SAME BASE			
Words	Numbers	Algebra	
To multiply powers with the same base, keep the base and add the exponents.	$3^{5} \cdot 3^{8} = 3^{5+8} = 3^{13}$	$b^{\mathbf{m}} \cdot b^{\mathbf{n}} = b^{\mathbf{m} + \mathbf{n}}$	

Main 👚

Additional Example 1: Multiplying Powers with the Same Base

Multiply. Write the product as one power.

B.
$$n^5 \cdot n^7$$

$$n^5 + 7 \qquad Add \ exponents.$$

$$n^{12}$$

Additional Example 1: Multiplying Powers with the Same Base Continued

Multiply. Write the product as one power.

C.
$$2^5 \cdot 2$$

$$2^{5+1}$$
 Think: $2 = 2^1$

248

Check It Out: Example 1

Multiply. Write the product as one power.

B.
$$x^2 \cdot x^3$$

 $x^2 + 3$ Add exponents.
 x^5

Notice what occurs when you divide powers with the same base.

$$\frac{5^5}{5^3} = \frac{5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5}{5 \cdot 5 \cdot 5} = \frac{\cancel{5} \cdot \cancel{5} \cdot \cancel{5} \cdot 5 \cdot 5}{\cancel{5} \cdot \cancel{5} \cdot \cancel{5}} = 5 \cdot 5 = 5^2$$

DIVIDING POWERS WITH THE SAME BASE			
Words	Numbers	Algebra	
To divide powers with the same base, keep the base and subtract the exponents.	$\frac{6^9}{6^4} = 6^9 - \frac{4}{4} = 6^5$	$\frac{b^{\mathbf{m}}}{b^{\mathbf{n}}} = b^{\mathbf{m} - \mathbf{n}}$	

Additional Example 2: Dividing Powers with the Same Base

Divide. Write the quotient as one power.

A.
$$\frac{7^5}{7^3}$$

$$7^{5-3}$$
Subtract exponents.
$$7^2$$

B.
$$\frac{x^{10}}{x^9}$$

$$x^{10-9}$$
Subtract exponents.
$$x = x$$
Think: $x^1 = x$

Check It Out: Example 2

Divide. Write the product as one power.

B.
$$\frac{e^{10}}{e^{5}}$$

$$e^{10-5}$$
Subtract exponents.
$$e^{5}$$

RAISING A POWER TO A POWER			
Words	Numbers	Algebra	
To raise a power to a power, keep the base and multiply the exponents.	$(9^4)^5 = 9^4 \cdot {}^5 = 9^{20}$	$(b^{\mathbf{m}})^{\mathbf{n}} = b^{\mathbf{m} \cdot \mathbf{n}}$	

Reading Math

(9⁴)⁵ is read as "nine to the fourth, to the fifth."

Additional Example 3: Raising a Power to a Power

Simplify.

```
A. (5<sup>4</sup>)<sup>2</sup>
(5<sup>4</sup>)<sup>2</sup>

5<sup>4</sup> • 2 Multiply exponents.
```

58

B.
$$(6^7)^9$$

 $(6^7)^9$

6⁷ • ⁹ Multiply exponents.

663

Additional Example 3: Raising a Power to a Power

Simplify.

$$\mathbf{C} \cdot \left(\left[\frac{2}{3} \right]^{12} \right)^{-3}$$

Multiply exponents.

$$\left(\frac{2}{3}\right)^{12} -3$$

$$\left(\frac{2}{3}\right)^{-36}$$

$$D. (17^2)^{-20}$$

$$(17^2)^{-20}$$

Multiply exponents.

Check It Out: Example 3

Simplify.

```
A. (3^3)^4
```

 $(3^3)^4$

33 • 4

Multiply exponents.

312

B. $(4^8)^2$

 $(4^8)^2$

48 • 2 Multiply exponents.

416

Check It Out: Example 3

Simplify.

$$\mathbf{C}.\left(\left[\frac{\mathbf{1}}{\mathbf{4}}\right]^{\mathbf{1}\mathbf{1}}\right)^{-2}$$

Multiply exponents.

$$\left(\frac{1}{4}\right)^{11 \cdot -2}$$

$$\left(\frac{1}{4}\right)^{-22}$$

$$D. (13^4)^{-10}$$

$$(13^4)^{-10}$$

Multiply exponents.

$$13^{-40}$$

PRACTICE

Complete each table.

Product of Powers	Write the Factors	Write as a Single Power
2 ² • 2 ⁴	$(2 \cdot 2) (2 \cdot 2 \cdot 2 \cdot 2) = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$	
44 • 43		
	$(5) (5 \cdot 5 \cdot 5 \cdot 5) = 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$	

2.	Quotient of Powers	Write the Factors	Write as a Single Power
	3 ⁵ 3 ²	3 · 3 · 3 · 3 · 3	
	5 ⁴ 5 ¹		
	4 ⁴ /4 ⁶		

Use properties of integers to write an equivalent expression.

v.com/math14/ga/msm/student/osp/g8/data/unit02/mod03/lesson02/exploration_core_lesson.pdf

Houghton Mifflin Harcou

Use properties of integers to write an equivalent expression.

3.
$$15^2 \cdot 15^{-5}$$

4.
$$\frac{20^{10}}{20^7}$$

5.
$$\frac{14^4}{14^9}$$

6.
$$(8^4)^{12}$$

7.
$$(12^{-5})^3$$

8.
$$4^{-3} \cdot 4^{-21}$$

10.
$$\frac{r^5}{r^2}$$

11.
$$(a^3)^{-3}$$

Module 3

65

Lesson 2

Find the missing exponent.

12.
$$b \cdot b^2 = b^8$$

13.
$$\frac{x^5}{} = x^{-2}$$

$$\binom{n}{n}^4 = n$$

Simplify each expression.

15.
$$3 \cdot (3^2)^2 + (8-4)^{-3}$$

16.
$$[(5+1)^2 \div 3] - 9^0$$

16. $[(5+1)^2 \div 3] - 9^0$ (c 22)1

Dranartice of Evnanante

n/math14/ga/msm/student/osp/g8/data/unit02/mod03/lesson02/exploration_core_lesson.pdf - Google Chrome

com/math14/ga/msm/student/osp/g8/data/unit02/mod03/lesson02/exploration_core_lesson.pdf

$$n \rightarrow -n$$

Simplify each expression.

15.
$$3 \cdot (3^2)^2 + (8-4)^{-3}$$

16.
$$[(5+1)^2 \div 3] - 9^0$$

16.
$$[(5+1)^2 \div 3] - 9^0$$
 Work these

17.
$$\frac{(6-2^2)^1}{(5-4)^6}$$

17.
$$\frac{(6-2^2)^1}{(5-4)^6}$$
 out in your

18.
$$\frac{\left[(4-1)^2\right]^0}{(2+1)^2}$$

19.
$$(2+4)^2 + 8^{-6} \times (12-4)^{10}$$

20.
$$(3^3)^2 \times \left(\frac{(5-2)^3}{3^4}\right) + (10-4)^2 \times 6^{10}$$

- **21.** There are $2^5 + 3^2$ games in half a full NBA season. How many games are in a full NBA season?
- 22. From Earth, it is about 22^4 miles to the moon and about 9.3×10^7 to the sun. About how much farther is it to the sun than to the moon?
- **23.** Error Analysis A student simplified the expression $\frac{4^3}{16^3}$ as $\frac{1}{4}$. Do you agree with the student? Justify your answer.

Homework

Text book Pg. 66 1-36 Even Only