2nd 9 weeks exam review

Disclaimer:

- Simply copying down the answers will NOT guarantee you will pass the final exam!
- You must go home and repeatedly study the practice problems and process
- In addition, study notes, textbooks, power points, class activities, etc.

Disclaimer #2:

· Although you may be exempting the final, you are still required to know this material for Milestones so please follow along and ask questions when assistance is needed.

Ch. 4

Solve each equation. Check yo

1.
$$y - 5 = -4$$

 $\frac{+5}{y} = \frac{+5}{1}$

1.
$$y-5=-4$$
 2. $n-9=-14$
 $+5$ $+5$ $+9$ $+9$ $+9$
 $y=1$ $n=-5$

$$\frac{2}{(5)}\frac{d}{5} = -7(5)$$

$$d = -35$$

$$|2 = \frac{W}{4}|$$
 (4)
48 = W

5.
$$W - 16.7 = 8.27$$

 $+16.7 = +16.7$
 $W = 24.97$

$$\frac{(7.4)}{7.4} = 6.9 (7.4)$$
e = 51.06

$$\frac{-4}{1} \cdot \frac{-1}{4} s = \frac{3}{4} \cdot \frac{-4}{1}$$
multiply by the reciprocal

$$= \frac{3}{4} \cdot \frac{-4}{1} \qquad \frac{5}{1} \quad \frac{1}{5} a = \frac{1}{2} \cdot \frac{5}{1}$$

$$\frac{-12}{4} \quad \frac{\div \quad 4}{\div \quad 4} \qquad -3$$

$$\frac{5}{2}$$
 $2\frac{1}{2}$

$$S = -3$$

$$a = 2\frac{1}{2}$$

9.
$$d-\frac{3}{5}=-\frac{7}{10}$$

10.
$$c + \frac{5}{12} = 2\frac{1}{6} \cdot \frac{2}{2}$$

$$+\frac{3}{5} + \frac{3}{5} \cdot \frac{2}{2}$$

$$-\frac{5}{12} - \frac{5}{12}$$

$$-\frac{5}{12}$$

$$\frac{-7}{10} + \frac{6}{10}$$

$$\frac{13}{6}$$
 $\frac{2}{2}$

$$\frac{13}{6} \cdot \frac{2}{2} \quad \frac{26}{12} \quad - \quad \frac{5}{12}$$

$$d = \frac{-1}{10}$$

$$d = \frac{21}{12} \quad 1 \frac{9}{12}$$

$$1\frac{3}{4}$$

Ch. 5

Solve. Check each answer.

1.
$$-3y - 7 = 2$$

$$-3y = 9$$

$$-3y = 9$$

$$y = -3$$

2.
$$\frac{u}{5} + 3 = 1$$

$$\frac{u}{5} = -2$$

$$u = -10$$

1.
$$-3y - 7 = 2$$
 2. $\frac{u}{5} + 3 = 1$ 3. $6 + \frac{z}{9} = 9$ $\frac{+7}{6} + \frac{7}{2} = \frac{1}{2}$ 3. $\frac{1}{5} + \frac{1}{2} = \frac{1}{2}$ 3. $\frac{1}{5} + \frac{1}{2} = \frac{1}{2}$

$$\frac{z}{9} = 3$$

$$z = 27$$

4.
$$\frac{1}{4}x - 3 = \frac{2}{5}$$
 5. $\frac{1}{6}x + 2 = \frac{1}{3}$

5.
$$\frac{1}{6}x + 2 = \frac{1}{3}$$

GCF = 20

$$(20) \frac{1}{4} \times - (20) 3 = (20) \frac{2}{5}$$

$$(6) \frac{1}{6} \times + (6) 2 = (6) \frac{1}{3}$$

$$5 \times - 60 = 8 \\ + 60 + 60$$

$$5 \times = 68 \\ 5 = 68$$

$$\times = -10$$

$$\times = 13.6$$

(6)
$$\frac{1}{6}$$
 x + (6) 2 = (6) $\frac{1}{3}$

6.
$$4k - 14 + 3k = 21$$

$$7k - 14 = 21$$
 $+14$
 $+14$

$$7k = 35$$

$$\frac{7k}{7} = \frac{35}{7}$$

$$k = 5$$

6.
$$4k - 14 + 3k = 21$$
 7. $9m + 10 - 14m = -5$

$$-5m + 10 = -5$$
 -10

$$-5m = -15$$

$$\frac{-5m}{-5} = \frac{-15}{-5}$$

$$m = 3$$

8.
$$6 = 8(s - \frac{3}{4}) - 20$$

$$6 = 8s - 26$$

$$4 = s$$

9.
$$1.4 - 1.6(t+6) = 4.6$$

$$-1.6t - 8.2 = 4.6$$

$$\frac{+8.2}{+8.2} + \frac{+8.2}{-1.6t}$$

$$-1.6t = 12.8$$

$$\frac{-1.6t}{-1.6} = \frac{12.8}{-1.6}$$

ch.5 Inequalities

Solve and graph each inequality.

1.
$$41 + g > 27$$

$$g > -14$$

3.
$$78 \ge b + 64$$

5.
$$\frac{-16}{-16}a \ge -\frac{24}{-16}$$

$$\times \text{ neg= flip (-6)} \frac{t}{-6} < -7 (-6)$$

2.
$$-3 \le t + 17$$

$$\frac{-6}{-6}$$
 < -7 (-6)

$$(5.3) \quad \frac{r}{5.3} \le 6 \quad (5.3)$$

$$r \leq 31.8$$

$$-7d > 21$$

$$d > -3$$

8.
$$4(g-3)+1\leq 5$$

$$\begin{array}{c|c}
4g & -11 & \leq 5 \\
 & & +11 \\
\hline
4q & & \leq 16 \\
\hline
4 & & & 4
\end{array}$$

$$-2a < 40$$

10.
$$\frac{1}{3}p - 8 - p \ge 4$$

-2/3 p - 8 \ge 4
 $\frac{+8}{4}$

$$(-3/2)$$
 $-2/3$ p $\geq 12(-3/2)$ p < -18

Ch. 6

Find the unit rate.

Maria earns \$603.75 for 35 hours of work.
 What is her rate of pay per hour?

$$\frac{$603.75}{35 \text{ hrs}} = \frac{$17.25}{1 \text{ hr}}$$

2. The Ranch House serves a 24 oz sirloin steak that has a total of 1,800 calories. How many calories per ounce does the steak have?

$$\frac{1,800 \text{ cal}}{24 \text{ oz}} = \frac{75 \text{ cal}}{1 \text{ oz}}$$
Can't have a partial envelope

3. Kia stuffs 228 envelopes in an hour. What is the average number of envelopes Kia stuffs per minute?

$$\frac{228 \text{ env.}}{60 \text{ mins}} = \frac{3.8}{1 \text{ min}} = \frac{3}{1 \text{ min}}$$

Determine whether the ratios are proportional.

96 96 4. 3 24 4 32

Proportional

90 90

5. $\frac{5}{6}$, $\frac{15}{18}$

Proportional

320 240

6. $\frac{10}{12}$, $\frac{20}{32}$

Not Proportional

Multiply or Divide the top and bottom of the ratio by ANY #

There are multiple correct answers for this section.

Possible ans below.

Find a ratio equivalent to each ratio.

7.
$$\frac{7}{9} = \frac{70}{90}$$
 8. $\frac{11}{12} = \frac{22}{24}$ 9. $\frac{14}{15} = \frac{70}{75}$

Use cross products to solve each proportion.

$$9.\ \frac{3}{7}=\frac{x}{49}$$

10.
$$\frac{15}{h} = \frac{5}{17}$$

11.
$$\frac{1.7}{3} = \frac{d}{21}$$

12.
$$\frac{3.7}{3} = \frac{s}{21}$$
 13.

12.
$$\frac{3.7}{3} = \frac{s}{21}$$
 13. $\frac{17}{41} = \frac{3}{1}$

$$147 = 7x$$

$$\frac{255}{5} = \frac{5h}{5}$$

255 = 5h

$$\frac{147}{7} = \frac{7x}{7} \qquad \frac{255}{5} = \frac{5h}{5} \qquad \frac{35.7}{3} = \frac{3d}{3} \qquad \frac{77.7}{3} = \frac{3s}{3}$$

35.7 = 3d 77.7 = 3s

$$21 = x$$

$$51 = h$$

$$11.9 = x \quad 25.9 = s$$

- 14. Asanji took a trip to Mexico. Upon leaving he decided to convert all of his Pesos back into dollars. How many dollars did he receive if he exchanged 42.7 Pesos at a rate of \$5.30 = 11.1 Pesos?
- 15. The currency in Argentina is the Peso. The exchange rate is approximately \$3 = 1 Peso. At this rate, how many Pesos would you get if you exchanged \$121.10?

$$\frac{\$5.30}{11.1 \text{ Pesos}} = \frac{X}{42.7 \text{ Pesos}}$$

$$226.31 = 11.1x$$

$$\frac{226.31}{11.1} = \frac{11.1x}{11.1}$$

$$\$20.39 = x$$

$$\frac{\$3}{1 \text{ Peso}} = \frac{\$121.10}{x}$$

$$121.10 = 3x$$

$$\frac{121.10}{3} = \frac{3x}{3}$$

40.4 Pesos =

$$\frac{3.3 \text{ in}}{42.9} = \frac{x}{32.5}$$

$$2.5 = x$$

17. Molly bought two heads of cabbage for \$1.80. How many heads of cabbage can Willie buy if he has \$28.80?

$$\frac{2}{$1.80} = \frac{x}{$28.80}$$
57.6 = 1.80x

$$\frac{57.6}{1.80} = \frac{1.80 \times}{1.80}$$

$$32 = \times$$

Ch. 8

Use indirect measurement to find the missing sides. Set up a proportion for each.

$$\frac{30}{15} = \frac{16}{y}$$

$$\frac{30}{15} = \frac{34}{x}$$

$$\frac{6}{5}$$
 = $\frac{2}{1}$

$$\frac{y}{5} = \frac{14.4}{12}$$

$$510 = 30x$$

$$\frac{240}{30} = \frac{30y}{30} = \frac{510}{30} = \frac{30x}{30}$$

$$5x = 78$$

$$\frac{210}{30} = \frac{30}{30}$$

$$\frac{310}{30} = \frac{30}{30}$$

$$\frac{3x}{5} = \frac{76}{5}$$

$$8 = y$$

$$17 = x$$

$$15.6 = x$$

3. $\Delta JKL \sim \Delta GKH$

Big Triangle
$$\frac{15}{x} = \frac{10}{6}$$

Little Triangle x

$$90 = 10x$$
 $\frac{90}{100} = \frac{10x}{100}$

$$9 = x$$

Set up proportions to solve each problem.

4. A giraffe is 18 feet tall and casts a shadow of 12 feet. Corry casts a shadow of 4 feet.

5. When a Ferris wheel casts a 20-meter shadow, a man 1.8 meters tall casts a 2.4-meter shadow. How tall is the Ferris wheel?

6. A flagpole casts a shadow 28 feet long. A person standing nearby casts a shadow eight feet long. If the person is six feet tall, how tall is the flagpole?

$$\frac{x}{6} = \frac{28}{8}$$

$$168 = 8x$$

$$21 = x$$

Identify the scale factor.

1

	Bear	Stuffed Animal
Height (in.)	62	15.5

2.

	House	Dollhouse
Height (ft)	32.4	2.7

model Actual

> <u>15.5</u> 62

> > $\frac{1}{4}$

<u>model</u> Actual

> <u>2.7</u> 32.4

> > <u>1</u> 12

3.

	Airplane	Model
Length (ft)	25.5	1.5

4.

	Alligator	Toy Alligator
Length (in.)	128.1	6.1

model Actual

> 25.5 1.5

> > <u>1</u> 17

model Actual

 $\frac{128.1}{6.1}$

<u>1</u> 21 Set up a proportion to solve.

On a map, the distance between Dallas and Houston is 6 inches. What is the actual distance between the cities if the map scale is 1 in = 40 kilometers.

$$\frac{1 \text{ in}}{40 \text{ km}} = \frac{6 \text{ in}}{x}$$

$$240 = x$$

A line on a blueprint measures 12 inches long with a ruler. The scale factor of the blue print is 1/4 inch = 1 ft. What is the measurement of the wall for the actual building?

$$\frac{\frac{1}{4} \text{ in}}{1 \text{ ft}} = \frac{12 \text{ in}}{x}$$

$$48 = x$$

This scale factor on a toy train is 1/64, which means that 1 in on the toy is equal to 64 inches on the train. If the train's wheel measures 45 feet, what will it measure on the toy car?

$$\frac{1 \text{ in}}{64 \text{ in}} = \frac{x}{540 \text{ in}}$$

$$8.44 = x$$

$$45 (x 12) = 540 in$$

Best Wishes on the final exam