

1.) The graph of f', the derivative of f, is shown for $-2 \le x \le 5$. On what intervals is f increasing? (ME#76)

(C) [3, 5] only

(E) [-2,-1], [1,2], and [4,5]

2.) The figure shows the graph of a function f with domain $0 \le x \le 4$. Which of the following statements are true? (ME#77)

I. $\lim_{x \to \infty} f(x)$ exists. II. $\lim_{x \to \infty} f(x)$ exists.

III. $\lim_{x \to \infty} f(x)$ exists.

(A) I only (B) II only (C) III only (D) and II only (E) I, II. and III

3.) The first derivative of the function f is defined by $f'(x) = \sin(x^3 - x)$ for $0 \le x \le 2$. On what intervals is f increasing? (ME#78)

(A) $1 \le x \le 1.445$ only

(B) 1≤x≤1.691

(C) $1.445 \le x \le 1.875$

(D) $0.577 \le x \le 1.445$ and $1.875 \le x \le 2$ (E) $0 \le x \le 1$ and $1.691 \le x \le 2$

4.). The derivative of the function f is given by $f'(x) = x^2 \cos(x^2)$. How many points of inflection does the graph of f have on the open interval (-2,2)? (ME#80)

(A) One (B) Two (C) Three (D) Four (E) Five

5.). If $\int_{-5}^{2} f(x) dx = -17$ and $\int_{5}^{2} f(x) dx = -4$, what is the value of $\int_{-5}^{5} f(x) dx$? (ME#79)

(A) -21 (B) -13 (C) 0 (D) 13 (E) 21 $\int_{-5}^{2} f(x) dx + \int_{2}^{5} f(x) dx = -17 + 4$ = -13

6.) If G(x) is an antiderivative for f(x) and G(2) = -7, then G(4) = (ME #81)

-7+ 54 f (4) Lt = 6(4)

(A) f(4) (B) -7 + f(4) (C) $\int_{2}^{4} f(t) dt$ (D) $\int_{2}^{4} (-7 + f(t)) dt$ (E) $-7 + \int_{2}^{4} f(t) dt$

7.) A particle moves along a straight line with velocity given by $v(t) = 7 - (1.01)^{-t^2}$ at time $t \ge 0$. What is the acceleration of the particle at time t = 3? (ME#82) (A) -0.914 (B) 0.053 (C) 5.486 (D) 6.086 (E) 18.087

- 8.) What is the area enclosed by the curves $y = x^3 8x^2 + 18x 5$ and y = x + 5? (ME#83)
- (A) 10.667 (B) 11.833 (C) 14.583
- (D) 21.333 (E) 32
- 9.) The graph of the derivative of a function f is shown in the figure. The graph has horizontal tangent lines at x = -1, x = 1, and x = 3. At which of the following values of x does f have a relative maximum? (ME #84)
- (A) -2 only
- (B) 1 only
- (D) -1 and 3 only
- (C) 4 only

	r	4	-3	-2	-1
f	(x)	0.75	-1.5	-2.25	-1.5
f'	(x)	-3	-1.5	0	1.5

10.) The table gives values of a function f and its derivative f at selected values of x. If f' is continuous on the interval [-4. -1], what is the value of

(C) 0 (D) 2.25

11.) The table gives selected values of the velocity, v(t), of a particle moving along the x-axis. At time t=0, the particle is at the origin. Which of the following could be the graph of the position, x(t), of the particle for $0 \le t \le 4$? (ME#86)

- x(0)= D
- 12.) An object traveling in a straight line has position x(t) at time t. If the initial position is x(0) = 2 and the velocity of the object is $v(t) = \sqrt[3]{1+t^2}$, what is the position of the object at time t=3? (ME#87)
- (A) 0.431 (B) 2.154
- (C) 4.512
- (E) 17.408
- $\int_{0}^{3} v(t) dt = \chi(3) \chi(0)$ 45115 = $\chi(3) \lambda$
- 13.) What is the average value of $y = \frac{\cos x}{x^2 + x + 2}$ on the closed interval [-1, 3]? (ME#91)
- A) -0.085 (B) 0.090 (C) 0.183 (D) 0.244 (E) 0.732
- (3-1)), y dx

14.) The radius of a sphere is decreasing at a rate of 2 centimeters per second. At the instant when the radius of the sphere is 3 centimeters, what is the rate of <u>change</u>, <u>in</u> square centimeters per second, of the surface area of the sphere? (The surface <u>area S</u> of a sphere with radius r is $S = 4\pi r^2$.) (ME #88)

(A) -108π	(B) -72π	(E) -16π
(C) -48π	(D) -24π	-

- **15.)** The function f is continuous for $-2 \le x \le 2$ -and f(-2) = f(2) = 0. If there is no c, where -2 < c < 2, for which f'(c) = 0, which of the following statements must be true? (MERRS)
- (A) For -2 < k < 2, f'(k) > 0. (B) For -2 < k < 2, f'(k) < 0. (C) For
 - (C) For -2 < k < 2, f'(k) exists.
- (D) For -2 < k < 2, f'(k) exists, but f' is not continuous. (E) For some k, where -2 < k < 2, f'(k) does not exist.

16.) A city located beside a river has a rectangular boundary as shown in the figure above. The population density of the city at any point along a strip x miles from the river's edge is f(x) persons per square mile. Which of the following expressions gives the population of the city? (ME#92)

(A)	(B)	(ME#92)	(D)	(E)
$\int_0^4 f(x)dx$	$\sqrt{\int_0^4 f(x)dx}$	$28\int_0^4 f($	$\int_0^7 f(x)dx$	$4\int_0^7 f(x)dx$

17.) The function f is continuous on the closed interval [2, 4] and twice differentiable on the open interval (2, 4). If f'(3) = 2 and f''(x) < 0 on the open interval (2, 4), which of the following could be a table of values for f? (ME\$30)

x	f(x)	r
2	2.5	
3	5	
4	6.5	
	2 3 4	2 2.5 3 5 4 6.5

(B)	x	f(x)
	2	2.5
	3	5
	4	7

(C)	x	f(x)
	2	3
	3	5
	4	6.5

(D)	x	f(x)
	2	3
	3	5
	4	7

(E)	x	f(x)
	2	3.5
	3	5
	4	7.5