type	statement	diagram
Assertion G.1.10	A is a,, or any sequence of the three. Rigid transformations take lines to, angles toof the same measure, and segments tothe same length.	A A A A A A A A A A A A A A A A A A A
Definition G.1.10	One figure isto another if there is a sequence of,, andthat takes the first figureonto the second figure. The second figure is called theof the rigid transformation.	$D = \sum_{E} \sum_{i=1}^{C} \sum_{j=1}^{C'} \sum_{i=1}^{C'} \sum_{j=1}^{C'} \sum_{j=1}^{C'} \sum_{j=1}^{C'} \sum_{i=1}^{C'} \sum_{j=1}^{C'} \sum_{j=1}$
Definition G.1.11	is a rigid transformation that takes a point to another point that is the samefrom the given line, on the other side of the given line, and so that the segment from the original point to the image isto the given line. Reflect (object) across line (name).	Reflect A across line m.
Definition G.1.12	is a rigid transformation that takes a point to another point so that the directedfrom the original point to the image isto the given line segment and has the sameand Translate (object) by the directed line segment (name or from [point] to [point]).	V A Translate A by the directed line segment v.
Assertion G.1.12	Parallel Postulate: Given a <u></u> A that is not on , there is exactly <u></u> that goes through A that is <u></u> to m.	m / A

Theorem G.1.12	take lines to	m/ m'/ v / m m'
Definition G.1.14	 is atransformation that takes a point to another point on the circle through the original point with the given The two radii to the original point and the image make the given Rotate (object) (clockwise or counterclockwise) by (angle or angle measure) using center (point). 	P' P' P C Rotate <i>P</i> counterclockwise by <i>a</i> ° using center <i>C</i> .
Theorem G.1.19	angles are	
Assertion G.1.20	by <u>takes lines to</u> lines or to <u></u> .	
Theorem G.1.20	Angle Theorem: If two lines are cut by a, then alternate interior angles are Conversely, if two lines are cut by aand alternate interior angles are, then the lines have to be	

Theorem G.1.20	Angle Theorem : If two <u>lines</u> are cut by a <u>,</u> , then corresponding angles are <u>.</u> .	
	Conversely, if two <u>and</u> are cut by a <u>and</u> corresponding angles are congruent, then the lines have to be <u>.</u> .	
Theorem G.1.21	Triangle Theorem : The threemeasures of any always sum todegrees	b° a° a+b+c=180
Theorem G.2.1	If two figures are, then parts of those figures must be	$P \xrightarrow{Q} P$ $P \xrightarrow{P} P \xrightarrow{P} \xrightarrow{P}$
Theorem G.2.3	If all pairs of correspondingand all pairs of corresponding are congruent, then themust be	$AB=DE, BC=EF, CA=FD, \angle B\cong \angle E, \angle A\cong \angle D, \\ \angle C\cong \angle F \text{ so } \triangle ABC\cong \triangle DEF$
Theorem G.2.5	If two <u>have the same</u> , then they are <u></u> .	$A \longrightarrow C$ $A \longrightarrow C$ $B \longrightarrow C$ $AB = CD \text{ so, } \overline{AB} \cong \overline{CD}$

Theorem G.2.6	Triangle Congruence Theorem : In two triangles, if two pairs of congruentand the pair of corresponding between the sides are, then the two triangles are	$A \to B$ $B \to B$ G $AB = GB, BC = BC, \angle ABC \cong \angle GBC$ SO $\triangle ABC \cong \triangle GBC$
Theorem G.2.6	 Triangle Theorem: In an <u></u> triangle, the <u></u> are <u></u> .	$A^{P} = PB \text{ so } \angle A \cong \angle B$
Theorem G.2.7	Triangle Congruence Theorem : In two triangles, if two pairs of corresponding, and the pair of corresponding between the angles are, then the triangles must be	D E A $ZA \cong \angle C, AE = EC, \angle DEA \cong \angle BEC,$ $So \triangle DEA \cong \triangle BEC$
Definition G.2.7	A <u>sides</u> .	M M $KL, NK \parallel ML, so$ $MNKL is a parallelogram$

Theorem G.2.7	In a, pairs ofsides are	M M M KL is a parallelogram, so $NM=KL, NK=ML$
Theorem G.2.8	If a C is the samefromas it is from, then C must be on theof AB .	$A = BC, M \text{ is the midpoint, so } MC \perp AB$
Theorem G.2.8	If C is a point on the <u></u> of segment AB , the distance from to <u></u> is the same as the <u></u> from <u></u> to <u></u> .	A A H M M B B A B L CM, AM=BM, SO AC=BC
Theorem G.2.9	Triangle Congruence Theorem : In two triangles, if of corresponding <u>are congruent, then the triangles must be</u> .	U G $HU=HJ, UG=JG, HG=HG \text{ so}$ $\Delta HUG\cong \Delta HJG$
Theorem G.2.9	In a,angles are	a $ABCD is a parallelogram, so \angle A \cong \angle C, \angle D \cong \angle B$

Definition G.2.12	A <u></u> is a quadrilateral with four <u></u> .	K M
Definition G.2.12	A <u>sides</u> .	N N N N N N N N N N N N N N N N N N N
Theorem G.2.12	If a <u>has (at least) one</u> , then it is a <u>.</u> .	KLMN has a right angle so it is a rectangle
Definition G.3.1	<u>i</u> is the factor by which every <u>in an original figure is</u> when you make a <u></u> copy.	1 .5 Scale factor is 2 or ½

Definition G.3.1	Awith center P and positive k takes a point A along the PA to another point whoseis k times further away from P thanis. Dilate <u>(object)</u> using center <u>(point)</u> and a scale factor of <u>(number)</u> .	$P = A' = k \cdot PA$
Assertion G.3.3	The <u>fa line segment is</u> or shorter according to the same given by the .	$B' = \frac{2}{2}C' = 3$ $B = \frac{2}{2}C' = 2:\frac{2}{3}$ $PC:PC' = 3:1, BC:B'C' = 2:\frac{2}{3}$
Assertion G.3.4	If a figure is, then correspondingare	$A'B'C' \text{ is a dilation of } \triangle ABC \text{ so } \angle B \cong \angle B'$
Theorem G.3.4	A <u></u> takes a line not passing through the <u></u> of the dilation to a line, and leaves a line passing through the <u></u> unchanged.	Dilate using center C. $DE \parallel D'E'$
Theorem G.3.5	If a line divides two <u>cons</u> of a triangle proportionally, the <u>must</u> be <u>to the</u> of the triangle.	$ \begin{array}{c} $

Definition G.4.6	Theof an acute angle in atriangle is the ratio (quotient) of the length of the	$cos(\theta) = \frac{adjacent}{hypotenuse}$
Definition G.4.6	The <u></u> of an acute angle in a <u></u> triangle is the ratio (quotient) of the length of the <u></u> leg to the length of the <u></u> .	opposite
		$\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}}$
G.4.6	Theof an acute angle in atriangle is the ratio (quotient) of the length of theleg to the length of the leg.	opposite adjacent
		$\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}}$
Definition G.4.9	Theof a number betweenandis the acute whoseis that number.	opposite
		$\operatorname{arccos}\left(\frac{\operatorname{adjacent}}{\operatorname{hypotenuse}}\right) = \theta$

Definition G.4.9	Theof a number betweenandis the acute whoseis that number.	$\frac{p_{y}}{p_{otenuse}}$ $\frac{h_{y}}{adjacent}$ $\frac{d}{adjacent}$ $\frac{d}{adjacent} = \theta$
Definition G.4.9	The <u></u> of a positive number is the acute <u></u> whose <u></u> is that number.	$\frac{\frac{hypotenuse}{djacent}}{adjacent} = \theta$
Theorem G.5.6	When any solid isusing aof k , all lengths are multiplied by, all areas are multiplied by, and all volumes are multiplied by	
Theorem G.5.10	Cavalieri's Principle : If two solids are cut into cross sections by planes, and the corresponding <u>on</u> on each plane always have areas, then the two solids have the same <u>.</u> .	
Theorem G.5.10	Aorwhose base has area square units and whoseis h units has volume cubic units, regardless of the shape of the base or whether the solid is oblique.	h

Theorem G.5.13	Aorwhose base has area square units and whoseis h units has volumecubic units, regardless of the shape of the base or whether the solid is oblique.	h
Definition G.5.17	Theof a substance is theof the substance per unit density =	500 cm ³ 500 ⁹ density = 1 g per cm ³
Theorem G.6.4	Awith(h, k) and r has equation	(h, k),
Definition G.6.7	A <u>site set of</u> that are equidistant from a given point, called the <u>set</u> , and a given line, called the <u>site</u> .	focus directrix
Definition G.6.9	The <u>form</u> of the equation of a line is <u>s</u> where (h , k) is a particular <u></u> on the line and m is the <u></u> of the line.	y (h, k)

Theorem G.6.10	Lines areif and only if they have	
Theorem G.6.11	Lines areif and only if their <mark></mark> are	
Assertion G.7.2	Angle Theorem : The measure of an <u></u> angle is <u></u> the measure of the <u></u> angle that defines the same arc.	$m \bot BCA = \frac{1}{2}m \bot BOA$
Theorem G.7.3	A <u></u> to a <u></u> if and only if it is <u></u> to the radius drawn to the point of <u></u> .	A

Theorem G.7.5	The 3 <u></u> of the sides of a triangle meet at a single <u></u> , called the triangle's <u></u> . This point is the <u></u> of the triangle's <u></u> .	
Theorem G.7.7	The 3of a triangle meet at a single, called the triangle's . This point is theof the triangle's	
Theorem G.7.8	To calculate the <u>of</u> a <u>or</u> the <u>of</u> an <u></u> , first find the fraction of the circle represented by the central angle of the arc or sector. Multiply this <u>by</u> the circle's <u>or</u> .	135° 4 cm arc length: 3π cm sector area: 6π cm ²
Definition G.7.11	For any, imagine drawing awith the angle's vertex at its . Then, themeasure of the angle is the ratio of the length of the arc defined by the angle to the circle's radius. That is,	r = 1