## \*\*\* THESE CARDS ARE FOR CALCULUS HONORS, AP CALCULUS AB AND AP CALCULUS BC. AP CALCULUS BC WILL HAVE ADDITIONAL CARDS FOR THE COURSE (IN A SEPARATE FILE).

The left column is the question and the right column is the answers. Cut out the flash cards and paste the question to one side of a note card and the answer to the other side. Be careful to paste the correct answer to its corresponding question!

## COMMON FORMULAS/TRIGONOMETRY/GEOMETRY

| Midpoint formula                    | $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$        |
|-------------------------------------|----------------------------------------------------------------|
| Distance formula (between 2 points) | $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$                     |
| Quadratic Formula                   | $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$                           |
| Pythagorean Theorem                 | $a^2 + b^2 = c^2$                                              |
| $\sin \theta =$                     | $\frac{opp}{hyp}$ and $\frac{y}{r}$ and $\frac{1}{\csc\theta}$ |
| $\cos\theta =$                      | $\frac{adj}{hyp}$ and $\frac{x}{r}$ and $\frac{1}{\sec\theta}$ |
| $\tan \theta =$                     | $\frac{opp}{adj}$ and $\frac{y}{x}$ and $\frac{1}{\cot\theta}$ |

| $\cot \theta =$                                | $\frac{adj}{opp}$ and $\frac{x}{y}$ and $\frac{1}{\tan\theta}$                      |
|------------------------------------------------|-------------------------------------------------------------------------------------|
| $\csc \theta =$                                | $\frac{hyp}{opp}$ and $\frac{r}{y}$ and $\frac{1}{\sin\theta}$                      |
| $\sec\theta =$                                 | $\frac{hyp}{adj}$ and $\frac{r}{x}$ and $\frac{1}{\cos\theta}$                      |
| Quotient Identity<br>tan <i>u</i>              | $\frac{\sin u}{\cos u}$                                                             |
| Quotient Identity<br>cot <i>u</i>              | $\frac{\cos u}{\sin u}$                                                             |
| Pythagorean Identities                         | $\sin^2 u + \cos^2 u = 1$<br>$1 + \tan^2 u = \sec^2 u$<br>$1 + \cot^2 u = \csc^2 u$ |
| Area of a Circle/<br>Circumference of a circle | $A = \pi r^2$ $C = 2\pi r$                                                          |
| Area of a Parallelogram                        | A = bh                                                                              |

| Area of a<br>Trapezoid | $\frac{1}{2}h(b_1+b_2)$                                                        |
|------------------------|--------------------------------------------------------------------------------|
| Area of a Triangle     | $\frac{1}{2}bh$                                                                |
| 30-60-90 triangle      | 1) Hypotenuse is 2 time short leg<br>2) Long leg is $\sqrt{3}$ times short leg |
| 45-45-90 triangle      | 1) Hypotenuse is $\sqrt{2}$ times leg<br>2) Two legs are equal                 |
| sin 0°                 | $\sin 0^\circ = 0$                                                             |
| sin 30°                | $\sin 30^\circ = \frac{1}{2}$                                                  |
| sin 45°                | $\sin 45^\circ = \frac{\sqrt{2}}{2}$                                           |
| sin 60°                | $\sin 60^\circ = \frac{\sqrt{3}}{2}$                                           |
| sin 90°                | $\sin 90^\circ = 1$                                                            |

| cos0°             | $\cos 0^\circ = 1$                   |
|-------------------|--------------------------------------|
| cos 30°           | $\cos 30^\circ = \frac{\sqrt{3}}{2}$ |
| $\cos 45^{\circ}$ | $\cos 45^\circ = \frac{\sqrt{2}}{2}$ |
| cos 60°           | $\cos 60^\circ = \frac{1}{2}$        |
| cos 90°           | $\cos 90^{\circ} = 0$                |
| tan 0°            | $\tan 0^\circ = 0$                   |
| tan 30°           | $\tan 30^\circ = \frac{\sqrt{3}}{3}$ |
| tan 45°           | $\tan 45^\circ = 1$                  |
| tan 60°           | $\tan 60^\circ = \sqrt{3}$           |
| tan 90°           | Undefined                            |

| $\sin(\alpha + \beta) =$ | $\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$                                                                        |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| $\sin(\alpha - \beta) =$ | $\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$                                                                        |
| $\cos(\alpha + \beta) =$ | $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$                                                                        |
| $\cos(\alpha - \beta) =$ | $\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$                                                                      |
| $\sin 2\theta =$         | $2\sin\theta\cos\theta$                                                                                                                   |
| $\cos 2\theta =$         | $\frac{\cos^2 \theta - \sin^2 \theta}{2\cos^2 - 1}$ $1 - 2\sin^2 \theta$                                                                  |
| Law of sines             | $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ or $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$                      |
| Law of cosines           | $a^{2} = b^{2} + c^{2} - 2bc \cos \angle A$<br>$b^{2} = a^{2} + c^{2} - 2ac \cos \angle B$<br>$c^{2} = a^{2} + b^{2} - 2ab \cos \angle C$ |
| Heron's Formula          | $\sqrt{s(s-a)(s-b)(s-c)}$ $s = \frac{a+b+c}{2}$                                                                                           |

| What is a "solution point".                                  | <i>(x,y)</i> pair that makes an equations with an <i>x</i> and <i>y</i> true                                                                                                                                                                                                                      |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P.1                                                          |                                                                                                                                                                                                                                                                                                   |
| How to find <i>x</i> and <i>y</i> intercepts of an equation. | <i>x</i> -intercept set <i>y=0</i> and solve for <i>x</i><br><i>y</i> -intercept set <i>x=0</i> and solve for <i>y</i>                                                                                                                                                                            |
| P.1                                                          |                                                                                                                                                                                                                                                                                                   |
| What are the three types of symmetry?                        | <ul> <li><i>y</i>-axis (replacing <i>x</i> with –<i>x</i> yielding original equation)</li> <li><i>x</i>-axis (replacing <i>y</i> with –<i>y</i> yielding original equation)</li> <li>origin (replacing <i>x</i> with –<i>x</i> and <i>y</i> with –<i>y</i> yielding original equations</li> </ul> |
| P.1                                                          |                                                                                                                                                                                                                                                                                                   |
| What are the 3 tests for symmetry?                           | <i>y</i> -axis<br><i>x</i> -axis<br>origin                                                                                                                                                                                                                                                        |
|                                                              |                                                                                                                                                                                                                                                                                                   |
| How to find the points of intersections of two equations?    | Simultaneously solving equations<br>(elimination, substitution or using<br>intersect feature of calculator                                                                                                                                                                                        |
| P.1                                                          |                                                                                                                                                                                                                                                                                                   |
| The formula for finding the slope<br>between two points?     | $\frac{y_2 - y_1}{x_2 - x_1}$                                                                                                                                                                                                                                                                     |
| P.2                                                          |                                                                                                                                                                                                                                                                                                   |
| What are the 4 types of slope?                               | positive, negative, zero, undefined                                                                                                                                                                                                                                                               |
| P.2                                                          |                                                                                                                                                                                                                                                                                                   |

| What is the point slope form of the equation of a line?                                           | $y - y_1 = m(x - x_1)$                                                              |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| P.2                                                                                               |                                                                                     |
| What are the relationships of slopes<br>between parallel lines and perpendicular<br>lines.<br>P.2 | parallel lines (same slope),<br>perpendicular lines (negative reciprocal<br>slopes) |
| How do you calculate an average rate of change?<br>P.2                                            | $\frac{f(b) - f(a)}{b - a}$                                                         |
| What is the slope-intercept equation of a line?                                                   | y = mx + b                                                                          |
| P.2                                                                                               |                                                                                     |
| What is the relationship between a relation and a function?                                       | Function has each <i>x</i> pointing to only one <i>y</i> value                      |
| P.3                                                                                               |                                                                                     |
| What does "one-to-one" mean?                                                                      | each <i>y</i> value is pointed to by only one <i>x</i> -<br>value                   |
| P.3                                                                                               |                                                                                     |
| What does "onto" mean?                                                                            | range consists of all of Y                                                          |
| ULT                                                                                               |                                                                                     |

| How do you prove a graph is a function?<br>P.3                                        | passes the Vertical Line Test                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                       |                                                                                                                                                                                                                                                                                                                                           |
| What are the 3 categories of elementary functions?                                    | a. algebraic (polynomial, radical,<br>rational)<br>b. trigonometric<br>c. exponential and logarithmic                                                                                                                                                                                                                                     |
| P.3                                                                                   |                                                                                                                                                                                                                                                                                                                                           |
| What is the leading coefficient test for polynomials?                                 | <ul> <li>a. even exponent of leading coefficient <ol> <li>leading coefficient &gt; 0 up/up</li> <li>leading coefficient &lt; 0 down/down</li> </ol> </li> <li>b. odd exponent of leading coefficient <ol> <li>leading coefficient &gt; 0 down left/up right</li> <li>leading coefficient &lt; 0 up left/down right</li> </ol> </li> </ul> |
| 1.5                                                                                   |                                                                                                                                                                                                                                                                                                                                           |
| What is an "odd" function?                                                            | (symmetric about origin)                                                                                                                                                                                                                                                                                                                  |
| P.3                                                                                   |                                                                                                                                                                                                                                                                                                                                           |
| What is an even function?                                                             | (y-axis symmetry)                                                                                                                                                                                                                                                                                                                         |
| P.3                                                                                   |                                                                                                                                                                                                                                                                                                                                           |
| What is the relationship of the domain<br>and range in inverse functions?<br>P.4      | The domains and ranges are swapped                                                                                                                                                                                                                                                                                                        |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                           |
| How can you determine if a function has<br>an inverse?                                | Original function will pass the<br>Horizontal Line Test                                                                                                                                                                                                                                                                                   |
| P.4                                                                                   |                                                                                                                                                                                                                                                                                                                                           |
| How can you visually determine of two<br>functions are inverses of each other?<br>P.4 | The two functions will be reflected about<br>the line y = x                                                                                                                                                                                                                                                                               |

| What are the domains and ranges of arcsin?<br>P.4   | Domain: $-1 \le x \le 1$<br>Range $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$   |
|-----------------------------------------------------|------------------------------------------------------------------------------|
| What are the domains and ranges of arccos?<br>P.4   | Domain: $-1 \le x \le 1$<br>Range $0 \le y \le \pi$                          |
| What are the domains and ranges of arctan?<br>P.4   | Domain: $-\infty < x < \infty$<br>Range $\frac{-\pi}{2} < y < \frac{\pi}{2}$ |
| а <sup>0</sup><br>Р.5                               | 1                                                                            |
| а <sup>х</sup> а <sup>у</sup><br>Р.5                | $a^{x+y}$                                                                    |
| ( <i>a<sup>x</sup></i> ) <sup><i>y</i></sup><br>P.5 | $a^{xy}$                                                                     |
| ( <i>ab</i> ) <sup><i>x</i></sup><br>P.5            | $a^x b^x$                                                                    |
| $\frac{a^x}{a^y}$ P.5                               | $a^{x-y}$                                                                    |
| $(\frac{a}{b})^x$ P.5                               | $\frac{a^x}{b^x}$                                                            |
| а <sup>-х</sup><br>Р.5                              | $\frac{1}{a^x}$                                                              |

Г

| lne <sup>x</sup><br>P.5                         | Х                           |
|-------------------------------------------------|-----------------------------|
| <i>е<sup>lnx</sup></i><br>Р.5                   | х                           |
| What are the domains and ranges of <i>lnx</i> ? | Domain: $(0, \infty)$       |
| P.5                                             | Range $(-\infty, \infty)$   |
| What are the domains and ranges of $e^{x}$ ?    | Domain: $(-\infty, \infty)$ |
| P.5                                             | Range $0, \infty$ )         |

| What is the formula for finding a secant line?<br>1.1                         | $M_{\rm sec} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$                                                                                                                                       |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What is the concept of a limit?                                               | If $f(x)$ becomes arbitrarily close to a<br>single number <i>L</i> as <i>x</i> approaches <i>c</i> from<br>either side the limit of $f(x)$ , as <i>x</i><br>approaches <i>c</i> , is <i>L</i> |
| What is a generic definition of a tangent line?                               | A line that touches curve at one point                                                                                                                                                        |
| What are the 3 conditions that need to<br>be met for a limit to exist?<br>1.2 | a. $\lim_{x \to a^+} f(x)$ exists<br>b. $\lim_{x \to a^-} f(x)$ exists<br>c. $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$                                                                  |
| What are the 3 conditions where a limit fails to exist?                       | a. unbounded behavior (vertical<br>asymptote)<br>b. limit from the left not equal to the<br>limit from the right<br>c. oscillating behavior                                                   |
| What is "well-behaved" function?<br>1.3                                       | $\lim_{x \to c} f(x) = f(c)$                                                                                                                                                                  |
| What are the 3 basic types of algebraic functions?                            | a. polynomial<br>b. rational<br>c. radical                                                                                                                                                    |
| What are techniques for finding limits?                                       | <ul> <li>a. direct substitution (plug n chug)</li> <li>b. dividing out (factoring)</li> <li>c. rationalizing the numerator</li> <li>d. make a table/graph</li> </ul>                          |

| What are the indeterminate forms of a function?                         | $\frac{0}{0}or\frac{\infty}{\infty}$                                                    |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| $\lim_{x \to 0} \frac{\sin x}{x}$ 1.3                                   | 1                                                                                       |
| $\lim_{x \to 0} \frac{1 - \cos x}{x}$                                   | 0                                                                                       |
| 1.3 $\lim_{x \to 0} (1+x)^{\frac{1}{x}}$ 1.3                            | е                                                                                       |
| What are the 3 conditions that need to<br>be met for continuity?<br>1.4 | a. $f(a)$ defined<br>b. $\lim_{x \to a} f(x)$ exists<br>c. $f(a) = \lim_{x \to a} f(x)$ |
| What is the concept of a "continuous"<br>function?                      | when a graph can be drawn without<br>lifting the pencil                                 |
| What is the concept of "everywhere continuous"?                         | continuous over the entire number line                                                  |
| What are 3 types of discontinuity?                                      | a. hole<br>b. infinite (vertical asymptote)<br>c. jump                                  |
| What is the concept of a "one-sided"<br>limit?<br>1.4                   | when only the limit from the left or the limit from the right of <i>x=c</i> is defined. |

| What are 5 types of functions that are<br>continuous at every point in their<br>domain?<br>1.4                | <ul> <li>a. polynomial functions</li> <li>b. rational functions</li> <li>c. radical functions</li> <li>d. trigonometric functions</li> <li>e. exponential and logarithmic</li> </ul>           |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What does the Intermediate Value<br>Theorem state?<br>1.4                                                     | If <i>f</i> is continuous on the closed interval $[a,b]$ and <i>k</i> is any number between $f(a)$ and $f(b)$ , then there exists at least one number <i>c</i> in $[a,b]$ such that $f(c) = k$ |
| What is a vertical asymptote?                                                                                 | Vertical line that is approached but<br>never touched (end behavior) and is a<br>result of the denominator of a rational<br>expression being undefined                                         |
| How can you determine the difference<br>between when a hole exists and a<br>vertical asymptote exists?<br>1.5 | If you can cancel a factor out of<br>denominator it is a hole                                                                                                                                  |
| What is a horizontal asymptote?                                                                               | Horizontal line that is approached but<br>never touched (end behavior) and is a<br>result of the denominator growing faster<br>than the numerator                                              |
| $\lim_{x \to \infty} \frac{c}{x^r}$ 1.6                                                                       | 0                                                                                                                                                                                              |
| $\lim_{x \to -\infty} \frac{c}{x^r}$ 1.6                                                                      | 0                                                                                                                                                                                              |
| $\lim_{x \to -\infty} e^x$                                                                                    | 0                                                                                                                                                                                              |
| $\lim_{x \to \infty} e^{-x}$                                                                                  | 0                                                                                                                                                                                              |

| $\frac{\sqrt{x^2}}{x} x > 0$                                   | 1                                                                                                                                                                     |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.6                                                            | (sneaky technique)                                                                                                                                                    |
| $\frac{\sqrt{x^2}}{-x} x < 0$                                  | 1                                                                                                                                                                     |
| 1.6                                                            | (sneaky technique)                                                                                                                                                    |
| What are the 3 tests for determining<br>horizontal asymptotes? | num exponent > den exponent, no<br>asymptote<br>num exponent < den exponent, y=0<br>num exponent = den exponent,<br>$y=\frac{leadingcoefficient}{leadingcoefficient}$ |
| 1.0                                                            |                                                                                                                                                                       |

| What is the definition of the derivative of a function using limits?             | $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$                          |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 2.1                                                                              |                                                                                                  |
| What is an <u>alternate</u> form of the derivative function using limits?<br>2.1 | $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$                                               |
| What is the difference quotient?                                                 | $\frac{f(x + \Delta x) - f(x)}{\Delta x}$                                                        |
| What are the 3 cases where a derivative fails to exist?                          | <ul><li>a. any point of discontinuity</li><li>b. cusp</li><li>c. vertical tangent line</li></ul> |
| Differentiation Rules:<br>Constant Rule                                          | $\frac{d}{dx}[c] = 0$                                                                            |
| 2.2                                                                              |                                                                                                  |
| Differentiation Rules:<br>Simple Power Rule<br>2.2                               | $\frac{d}{dx}[x^n] = nx^{n-1}$                                                                   |
| Differentiation Rules:<br>Constant Multiple Rule<br>2.2                          | $\frac{d}{dx}[cf(x)] = cf'(x)$                                                                   |
|                                                                                  |                                                                                                  |
| Differentiation Rules:<br>Sum and Difference Rules<br>2.2                        | $\frac{d}{dx}[f(x)\pm g(x)] = f'(x)\pm g'(x)$                                                    |
| $\frac{d}{dx}[\sin x]$                                                           | cos x                                                                                            |

| $\frac{d}{dx}[\cos x] =$ 2.2                      | $-\sin x$                                                                                        |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $\frac{d}{dx}[e^x]$ 2.2                           | e <sup>x</sup>                                                                                   |
| What is the standard<br>position function?<br>2.2 | $s(t) = -16t^2 + V_0t + S_0$ -4.9 can be substituted if calculating in<br>meters instead of feet |
| $\frac{d}{dx}[\tan x] =$ 2.3                      | $\sec^2 x$                                                                                       |
| $\frac{d}{dx}[\csc x] =$ 2.3                      | $-\csc x \cot x$                                                                                 |
| $\frac{d}{dx}[\sec x] =$                          | $\sec x \tan x$                                                                                  |
| $\frac{d}{dx}[\cot x] =$ 2.3                      | $-\csc^2 x$                                                                                      |
| Differentiation Rules:<br>Product Rule<br>2.3     | f(x)g'(x) + g(x)f'(x)<br>first d second + second d first                                         |

| Differentiation Rules:<br>Quotient Rule<br>2.3 | $\frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$<br>bottom d top – top d bottom over<br>bottom squared |
|------------------------------------------------|----------------------------------------------------------------------------------------------|
| Differentiation Rules:<br>Chain Rule           | f'(g(x))g'(x)<br>d outer d inner (don't touch the stuff)                                     |
| Differentiation Rules:<br>General Power Rule   | $nu^{n-1}u'$                                                                                 |
| $\frac{d}{dx}[\sin u] =$                       | (cos <i>u</i> ) <i>u</i> '                                                                   |
| $\frac{d}{dx}[\cos u] =$ 2.4                   | $(-\sin u)u'$                                                                                |
| $\frac{d}{dx}[\tan u] =$                       | $(\sec^2 u)u'$                                                                               |
| $\frac{d}{dx}[\cot u] =$                       | $-(\csc^2 u)u'$                                                                              |
| $\frac{d}{dx}[\sec u] =$ 2.4                   | (sec <i>u</i> tan <i>u</i> ) <i>u</i> '                                                      |

| $\frac{d}{dx}[\csc u] =$                | $-(\csc u \cot u)u'$                                   |
|-----------------------------------------|--------------------------------------------------------|
| 2.4                                     |                                                        |
| $\frac{d}{dx}[\ln x]$                   | $\frac{1}{x}$ , $x > 0$                                |
| $\frac{d}{dx}[\ln u ]$                  | $\frac{u'}{u}$                                         |
| log <sub><i>a</i></sub> <i>x</i><br>2.4 | $\frac{1}{\ln a}\ln x \text{ or } \frac{\ln x}{\ln a}$ |
| $\frac{d}{dx}[a^x]$                     | (lna)a <sup>x</sup>                                    |
| $\frac{d}{dx}[a^u]$ 2.4                 | $(lna)a^u \frac{du}{dx}$                               |
| $\frac{d}{dx}[\log_a x]$ 2.4            | $\frac{1}{(lna)x}$                                     |

| $\frac{d}{dx}[\log_a u]$                                                          | $\frac{1}{(lna)u}\frac{du}{dx} \text{ or } \frac{u'}{(lna)u}$ |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------|
| $\frac{d}{dx}[e^u]$                                                               | e <sup>u</sup> u'                                             |
| What is the explicit form of an equation?<br>2.5                                  | when an equation is solved for one<br>variable                |
| Inverse functions have what types<br>of slopes at inverse pairs of points?<br>2.6 | reciprocal slopes                                             |
| $\frac{d}{dx}[\arcsin u] =$ 2.6                                                   | $\frac{u'}{\sqrt{1-u^2}}$                                     |
| $\frac{d}{dx}[\arccos u] =$ 2.6                                                   | $\frac{-u'}{\sqrt{1-u^2}}$                                    |
| $\frac{d}{dx}[\arctan u] =$ 2.6                                                   | $\frac{u'}{1+u^2}$                                            |
| $\frac{d}{dx}[\operatorname{arc} \operatorname{cot} u] =$ 2.6                     | $\frac{-u'}{1+u^2}$                                           |
| $\frac{d}{dx}[\arccos u] =$ 2.6                                                   | $\frac{u'}{ u \sqrt{u^2-1}}$                                  |

| $\frac{d}{dx}[\arccos u] =$ 2.6                                                         | $\frac{-u'}{ u \sqrt{u^2-1}}$ |
|-----------------------------------------------------------------------------------------|-------------------------------|
| What is a related rate derivative<br>usually taken with respect to?<br>2.7              | time                          |
| What is the formula for the volume<br>of a cone?<br>2.7                                 | $V = \frac{\pi}{3}r^2h$       |
| What is the formula for the volume<br>of a sphere?<br>2.7                               | $V = \frac{4}{3}\pi r^3$      |
| What is a another name for a tangent line of approximation called?<br>2.8               | linear approximation          |
| What method uses a tangent<br>line to approximate the y-values<br>of a function?<br>2.8 | Newton's method               |

| What is a "maximum"?<br>3.1                                                                                                                             | <i>f(c)</i> > all <i>f(x)</i> on an interval                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What is a "minimum"?<br>3.1                                                                                                                             | <i>f(c)</i> < all <i>f(x)</i> on an interval                                                                                                                                 |
| What is the difference between critical<br>numbers and critical points?<br>3.1                                                                          | critical numbers are <i>x</i> -values and critical<br>points are ( <i>x</i> , <i>y</i> ). Critical numbers are<br>found when $f'(c) = 0$ or where $f'(c)$<br>does not exist. |
| What theorem state if <i>f</i> is continuous<br>on a closed interval [a,b], then<br><i>f</i> has both a minimum and a maximum<br>on the interval<br>3.1 | Extreme Value<br>Theorem                                                                                                                                                     |
| Where does the derivative fail to<br>identify possible extrema?<br>3.1                                                                                  | endpoints                                                                                                                                                                    |
| What does Rolle's Theorem state?<br>3.2                                                                                                                 | if $f(a) = f(b)$ then there exists at least one<br>number $c$ in $(a,b)$ such that $f'(c) = 0$                                                                               |
| What does the Mean Value Theorem state?<br>3.2                                                                                                          | $f'(c) = \frac{f(b) - f(a)}{b - a}$                                                                                                                                          |
| What are two major similarities between<br>Rolle's Theorem and the Mean Value<br>Theorem?                                                               | Function must be 1) continuous and<br>2) differentiable                                                                                                                      |
| What is meant by "increasing" in terms<br>of a derivative?<br>3.3                                                                                       | <i>f</i> '( <i>x</i> ) > 0 for all <i>x</i> in ( <i>a</i> , <i>b</i> )                                                                                                       |

Γ

| What is meant by "decreasing" in terms<br>of a derivative?   | f'(x) < 0 for all <i>x</i> in <i>(a,b)</i>                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.3                                                          |                                                                                                                                                                                                                                                                                                                                 |
| What is meant by "constant" in terms of<br>a derivative?     | f'(x) = 0 for all $x$ in $(a,b)$                                                                                                                                                                                                                                                                                                |
| 5.5                                                          |                                                                                                                                                                                                                                                                                                                                 |
| What does "strictly monotonic" mean"?                        | When a function is either increasing or decreasing on entire interval                                                                                                                                                                                                                                                           |
| 3.3                                                          |                                                                                                                                                                                                                                                                                                                                 |
| What does the first derivative test state?                   | <ul> <li>a. if f'(x) changes from increasing to decreasing at x = c then f'(C) is a relative maximum</li> <li>b. if f'(x) changes from decreasing to increasing at x = c then f'(C) is a relative minimum</li> <li>c. if f'(x) does not change signs at x = c then f'(C) is a neither a relative maximum or relative</li> </ul> |
| How do you use the second derivative to determine concavity? | a. if $f''(x) > 0$ , for all x in an interval<br>f is concave upward<br>b. if $f''(x) < 0$ , for all x in an interval<br>f is concave downward                                                                                                                                                                                  |
| What are "points of inflection"?<br>3.4                      | where $f''(c) = 0$ or $f''(c)$ is undefined<br>(where a graph goes from concave<br>upward to concave downward or vice<br>versa                                                                                                                                                                                                  |

| How do you use the second derivative to<br>determine relative extrema using critical<br>numbers?<br>3.4 | <ul> <li>a. if f "(c) &gt; 0, then f(c) is a relative minimum</li> <li>b. if f "(c) &lt; 0, then f(c) is a relative maximum</li> <li>c. if f "(c) = 0 then use must use the First Derivative Test</li> </ul> |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In optimization problems what<br>is the equation that is to<br>be optimized called?<br>3.6              | primary equation                                                                                                                                                                                             |
| What is a differential equation?<br>3.7                                                                 | an equation that contains a derivative                                                                                                                                                                       |
| What is the equation for<br>a tangent line of approximation<br>(linear approximation)?<br>3.7           | y = f(c) + f'(c)(x - c)                                                                                                                                                                                      |

| $\int 0 dx$ 4.1              | С                             |
|------------------------------|-------------------------------|
| $\int du =$ 4.1              | u+C                           |
| $\int kf(x)dx$ 4.1           | $k \int f(x) dx$              |
| $\int [f(x) \pm g(x)] dx$    | $\int f(x)dx \pm \int g(x)dx$ |
| $\int x^n dx =$ 4.1          | $\frac{x^{n+1}}{n+1} + C$     |
| $\int \cos x  dx =$ 4.1      | $\sin x + C$                  |
| $\int \sin x  dx =$ 4.1      | $-\cos x + C$                 |
| $\int (\sec^2 x) dx$ 4.1     | $\tan x + C$                  |
| $\int \sec x \tan x  dx$ 4.1 | $\sec x + C$                  |

| $\int (\csc^2 x) dx =$ 4.1                                                           | $-\cot x + C$            |
|--------------------------------------------------------------------------------------|--------------------------|
| $\int \csc x \cot x  dx$ 4.1                                                         | $-\csc x + C$            |
| $\int e^x dx$                                                                        | $e^x + C$                |
| $\int a^x dx$                                                                        | $(\frac{1}{lna})a^{x}+C$ |
| $\int \frac{1}{x} dx$                                                                | $\ln  x  + C$            |
| To change a general solution<br>into a particular solution what is<br>needed?<br>4.1 | an initial condition     |
| $\sum_{i=1}^{n} a_i$ is what type of notation?<br>4.2                                | sigma notation           |
| $\sum_{i \to 1}^{n} c$ 4.2                                                           | сп                       |
| $\sum_{i \to 1}^{n} i$                                                               | $\frac{n(n+1)}{2}$       |



| $\int_{a}^{b} kf(x)dx)$ 4.3                      | $k\int_{a}^{b}f(x)dx$                                           |
|--------------------------------------------------|-----------------------------------------------------------------|
| $\int_{a}^{b} [f(x) \pm g(x)] dx$ 4.3            | $\int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$                   |
| Trapezoidal Rule<br>4.3                          | $\frac{b-a}{2n}[f(x_0) + 2f(x_1) + \dots 2f(x_{n-1}) + f(x_n)]$ |
| Fundamental Theorem of<br>Calculus<br>4.4        | $\int_{a}^{b} f(x)dx = F(b) - F(a)$                             |
| Mean Value Theorem<br>For Integrals<br>4.4       | $\int_{a}^{b} f(x)dx = f(c)(b-a)$                               |
| Average value of a function                      | $\frac{1}{b-a}\int_{a}^{b}f(x)dx$                               |
| Second Fundamental<br>Theorem of Calculus<br>4.4 | $\frac{d}{dx}\left[\int_{a}^{x} f(t)dt\right] = f(x)$           |
| Net Change Theorem                               | $\int_{a}^{b} F'(x) = F(b) - F(a)$                              |

| $\int u^n  du =$ 4.5                                  | $\frac{u^{n+1}}{n+1} + C$             |
|-------------------------------------------------------|---------------------------------------|
| $\int kf(x)dx$                                        | $k\int f(x)dx$                        |
| $\int_{-a}^{a} f(x) dx \text{ (even function)}$       | $2\int_0^a f(x)dx$                    |
| 4.5<br>$\int_{-a}^{a} f(x) dx \text{ (odd function)}$ | 0                                     |
| $\int \frac{du}{u} =$                                 | $\ln u  + C$                          |
| $\int a^u  du =$                                      | $\left(\frac{1}{\ln a}\right)a^u$ + C |
| $\int \sin u  du =$ 4.6                               | $-\cos u + C$                         |
| $\int \cos u  du =$ 4.6                               | $\sin u + C$                          |
| $\int \tan u  du =$ 4.6                               | $-\ln \cos u +C$                      |

| $\int \cot u  du =$ 4.6           | $\ln \sin u  + C$                      |
|-----------------------------------|----------------------------------------|
| $\int \sec u  du =$ 4.6           | $\ln \sec u + \tan u  + C$             |
| $\int \csc u =$ 4.6               | $-\ln\left \csc u + \cot u\right  + C$ |
| $\int \sec^2 u  du =$             | $\tan u + C$                           |
| $\int \csc^2 u  du =$             | $-\cot u + C$                          |
| $\int \sec u \tan u  du =$ 4.6    | $\sec u + C$                           |
| $\int \csc u \cot u  du =$ 4.6    | $-\csc u + C$                          |
| $\int \frac{du}{a^2 + u^2} =$ 4.7 | $\frac{1}{a}\arctan\frac{u}{a}+C$      |



| What is a differential equation?                                                                                                      | an equation that includes a derivative                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| What is Euler's Method?<br>5.1                                                                                                        | a numerical approach to approximating<br>the particular solution to a differential<br>equation |
| What is the solution to a exponential growth or decay problem?                                                                        | $y = Ce^{kt}$                                                                                  |
| What is <i>k</i> in a half-life problem?<br>5.2                                                                                       | $\frac{\ln\left(\frac{1}{2}\right)}{t} = k$                                                    |
| What is the process of collecting all<br>terms with <i>x</i> 's and <i>y</i> 's on opposite sides<br>of the equal sign called?<br>5.2 | separation of variables                                                                        |

| How do you find the area between two<br>curves?<br>6.1                     | $\int_{a}^{b} [f(x) - g(x)] dx$                 |
|----------------------------------------------------------------------------|-------------------------------------------------|
| Disk Method<br>Horizontal Axis of Revolution<br>6.2                        | $\pi \int_{a}^{b} [R(x)]^2 dx$                  |
| Disk Method<br>Vertical Axis of Revolution                                 | $\pi\int_{c}^{d} [R(y)]^2  dy$                  |
| Washer Method<br>Horizontal Axis of Revolution<br>6.2                      | $\pi \int_{a}^{b} ([R(x)]^{2} - [r(x)]^{2}) dx$ |
| Washer Method<br>Vertical Axis of Revolution<br>6.2                        | $\pi \int_{c}^{d} ([R(y)]^{2} - [r(y)]^{2}) dy$ |
| Volume of solid with known cross<br>section perpendicular to x-axis<br>6.2 | $\int_{a}^{b} A(x) dx$                          |
| Volume of solid with known cross<br>section perpendicular to y-axis<br>6.2 | $\int_{c}^{d} A(y) dy$                          |