

Warm Up Lesson Presentation Lesson Quiz

Holt McDougal Geometry

Warm Up
Solve each equation.
1.
$$3x + 5 = 17$$
 $x = 4$
2. $r - 3.5 = 8.7$ $r = 12.2$
3. $4t - 7 = 8t + 3t = -\frac{5}{2}$
4. $\frac{n+8}{5} = -6$ $n = -38$
5. $2(y - 5) - 20 = 0$ $y = 15$

Holt McDougal Geometry

Solve for x. Show Angle measures.

Copyright © by Holt Mc Dougal. All Rights Reserved.

Holt McDougal Geometry

Solve for x. Show Angle measures.

Copyright © by Holt Mc Dougal. All Rights Reserved.

Holt McDougal Geometry

Review properties of equality and use them to write algebraic proofs.

Identify properties of equality and congruence.

Holt McDougal Geometry

A **proof** is an argument that uses logic, definitions, properties, and previously proven statements to show that a conclusion is true.

An important part of writing a proof is giving justifications to show that every step is valid.

Properties of Equality

Addition Property of Equality	If $a = b$, then $a + c = b + c$.
Subtraction Property of Equality	If $a = b$, then $a - c = b - c$.
Multiplication Property of Equality	If $a = b$, then $ac = bc$.
Division Property of Equality	If $a = b$ and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$.
Reflexive Property of Equality	a = a
Symmetric Property of Equality	If $a = b$, then $b = a$.
Transitive Property of Equality	If $a = b$ and $b = c$, then $a = c$.
Substitution Property of Equality	If <i>a</i> = <i>b</i> , then <i>b</i> can be substituted for <i>a</i> in any expression.

See the next slide for larger print.

Holt McDougal Geometry

2-5 Algebraic Proof		
Addition Pro	If $a = b$, then $a + c = b + c$.	
Subtraction F	If $a = b$, then $a - c = b - c$.	
Multiplicatio	If $a = b$, then $ac = bc$.	
Division Prop	If $a = b$ and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$.	
Reflexive Pro	a = a	
Symmetric Pr	If $a = b$, then $b = a$.	
Transitive Pro	If $a = b$ and $b = c$, then $a = c$.	
Substitution	If $a = b$, then b can be substituted for a in any expression.	

Holt McDougal Geometry

Remember!

The Distributive Property states that a(b + c) = ab + ac.

Holt McDougal Geometry

Example 1: Solving an Equation in Algebra

Solve the equation 4m - 8 = -12. Write a justification for each step.

4m - 8 = -12 +8 + 8 4m = -4 $\frac{4m}{4} = \frac{-4}{4}$ m = -1

Given equation

- Addition Property of Equality Simplify.
- **Division Property of Equality**

Simplify.

Check It Out! Example 1

Solve the equation $\frac{1}{2}t = -7$. Write a justification for each step.

 $\frac{1}{2}t = -7$ Given equation

 $2\left(\frac{1}{2}\right)t = 2(-7)$ Multiplication Property of Equality.

t = -14 Simplify.

Example 2: Problem-Solving Application

What is the temperature in degrees Fahrenheit *F* when it is 15°C? Solve the equation $F = \frac{9}{5}C + 32$ for *F* and justify each step.

The answer will be the temperature in degrees Fahrenheit. List the important information:

$$F = \frac{9}{5}C + 32$$
 $C = 15$

Holt McDougal Geometry

Substitute the given information into the formula and solve.

Holt McDougal Geometry

Check your answer by substituting it back into the original formula.

$$F = \frac{9}{5}C + 32$$

59 = $\frac{9}{5}(15) + 32$
59 = 59 ✓

Holt McDougal Geometry

What is the temperature in degrees Celsius C when it is 86°F? Solve the equation C = 5/9 (F – 32) for C and justify each step.

The answer will be the temperature in degrees Celsius. List the important information:

$$C = \frac{5}{9}(F - 32)$$
 $F = 86$

Holt McDougal Geometry

Substitute the given information into the formula and solve.

 $C = \frac{5}{9}(F - 32)$ $C = \frac{5}{9}(86 - 32)$

Given equation

Substitution Property of Equality

- Simplify.
 - Simplify.

 $C = 30^{\circ}$

C = 30

 $C = \frac{5}{9}(54)$

Check your answer by substituting it back into the original formula.

$$C = \frac{5}{9}(F - 32)$$

30 = $\frac{5}{9}(86 - 32)$
30 = 30 ✓

Holt McDougal Geometry

Like algebra, geometry also uses numbers, variables, and operations. For example, segment lengths and angle measures are numbers. So you can use these same properties of equality to write algebraic proofs in geometry.

Example 3: Solving an Equation in Geometry

Write a justification for each step.

NO = NM + MOSegment Addition Post.4x - 4 = 2x + (3x - 9)Substitution Property of Equality4x - 4 = 5x - 9Simplify.-4 = x - 9Subtraction Property of Equality5 = xAddition Property of Equality

Check It Out! Example 3

Write a justification for each step.

Holt McDougal Geometry

Copyright © by Holt Mc Dougal. All Rights Reserved.

 $(3x + 5)^{\circ}$

(6x - 16)

You learned in Chapter 1 that segments with equal lengths are congruent and that angles with equal measures are congruent. So the Reflexive, Symmetric, and Transitive Properties of Equality have corresponding properties of congruence.

Properties of Congruence		
SYMBOLS	EXAMPLE	
Reflexive Property of Congruence		
figure $A \cong$ figure A (Reflex. Prop. of \cong)	$\overline{EF} \cong \overline{EF}$	
Symmetric Property of Congruence		
If figure $A \cong$ figure B , then figure $B \cong$ figure A . (Sym. Prop. of \cong)	If $\angle 1 \cong \angle 2$, then $\angle 2 \cong \angle 1$.	
Transitive Property of Congruence		
If figure $A \cong$ figure B and figure $B \cong$ figure C , then figure $A \cong$ figure C . (Trans. Prop. of \cong)	If $\overline{PQ} \cong \overline{RS}$ and $\overline{RS} \cong \overline{TU}$, then $\overline{PQ} \cong \overline{TU}$.	

Holt McDougal Geometry

Remember!

Numbers are equal (=) and figures are congruent (\cong).

Holt McDougal Geometry

Example 4: Identifying Property of Equality and Congruence

- Identify the property that justifies each statement.
- **A.** $\angle QRS \cong \angle QRS$ Reflex. Prop. of \cong .
- **B.** $m \angle 1 = m \angle 2$ so $m \angle 2 = m \angle 1$ Symm. Prop. of =
- C. $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, so $\overline{AB} \cong \overline{EF}$. Trans. Prop of \cong
- **D.** 32° = 32° Reflex. Prop. of =

Check It Out! Example 4

Identify the property that justifies each statement.

4a. *DE* = *GH*, so *GH* = *DE*. Sym. Prop. of =

4b. 94° = **94°** Reflex. Prop. of =

4c. 0 = *a*, and *a* = *x*. So 0 = *x*. Trans. Prop. of =

4d. $\angle A \cong \angle Y$, so $\angle Y \cong \angle A$ Sym. Prop. of \cong

Lesson Quiz: Part I

Solve each equation. Write a justification for each step.

Lesson Quiz: Part II

Solve each equation. Write a justification for each step.

2.
$$6r - 3 = -2(r + 1)$$

8r - 3 = -2

8r = 1

 $r=\frac{1}{8}$

6r - 3 = -2(r + 1) Given

$$6r - 3 = -2r - 2$$
 Distrib. Prop.

Add. Prop. of =

Div. Prop. of =

Lesson Quiz: Part III

Identify the property that justifies each statement.

3. x = y and y = z, so x = z. Trans. Prop. of =

4. $\angle DEF \cong \angle DEF$ Reflex. Prop. of \cong

5. $\overline{AB} \cong \overline{CD}$, so $\overline{CD} \cong \overline{AB}$. Sym. Prop. of \cong