Today, you will need:

- calculator
- pencil
- notebook
- glue
- highlighter

Comparing Relationships with Tables

CCSS Standards: Building on	• 6.RP.A.3
CCSS Standards: Addressing	• 7.RP.A.2
CCSS Standards: Building towards	• 7.RP.A-1

Lesson 7

Lesson Attributions:

Let's explore how proportional relationships are different from other relationships!

Today's Goal

☐ I can decide if a relationship represented by a <u>table</u> could be <u>proportional</u> and when it is definitely <u>not proportional</u>.

Adjusting a Recipe

A lemonade recipe calls for the juice of 5 lemons, 2 cups of water, and 2 tablespoons of honey.

Invent 4 new versions of this recipe:

- One that would make more lemonade but taste the same
- One that should make less lemonade but taste the same
- One that would have a stronger lemon taste
- One that would have a weaker lemon taste

Visiting the State Park

Entrance to a state park costs \$6 per vehicle. Additionally, each visitor must pay \$2.

What do you think the question is?

- → Begin with Quiet Work Time. (5 min.)
- → Let's discuss with a partner!

# of people in vehicle	total entrance cost in dollars
2	
4	
10	

Is this relationship proportional? Why or why not?

"Are you ready for more?"

What equation could you use to find the total entrance cost for a vehicle with any number of people?

Running Laps

Activity 7.3
Think, Pair, Share

Begin working on your own. (5 min.)

Share your thinking as a team.

Is Han running at a constant pace? Is Clare?

Han's run:

distance (laps)	time (minutes)	minutes per lap
2	4	
4	9	
6	15	10
8	23	

Clare's run:

distance (laps)	time (minutes)	minutes per lap	
2	5		
4	10		
6	15		
8	20		

Can you represent either relationship with an equation?

Han's run:

distance (laps)	time (minutes)	minutes per lap
2	4	2
4	9	2.25
6	15	2.5
8	23	2.875

Clare's run:

distance (laps)	time (minutes)	minutes per lap
2	5	2.5
4	10	2.5
6	15	2.5
8	20	2.5

Are the pairs of values in the table for Clare's run still values of a proportional relationship if we calculate laps per minute instead of minutes per lap?

Clare's run:

distance (laps)	time (minutes)	minutes per lap
2	5	2.5
4	10	2.5
6	15	2.5
8	20	2.5

Today's Goal

☐ I can decide if a relationship represented by a <u>table</u> could be <u>proportional</u> and when it is definitely <u>not proportional</u>.

Apples and Pizza

