1.) Given $f(x) = x^3$.	2.) Let <i>f</i> be a function with		
- ()	$f(x) = \sin(x^2)$ and $f(0) = -1$.		
(a) Write the equation of the tangent line to f at $x = 1$ (b) Use your answer to (a) to find an approximation for			
f(1.1).	(a) Write the equation of the tangent line to f at $x = 0$.		
	(b) Use your answer to (a) to find an approximation for $f(0.1)$.		
(c) Find the actual value of $f(1.1)$.			
(d) Find the amount of error of your approximation.	(c) Find $f''(x)$ and $f''(0.1)$. Is the graph of f		
	concave up or concave down around $x = 0.1$? Use		
	your answer to determine whether your		
	approximation for $f(0.1)$ is greater than or less		
	than the actual value of $f(0.1)$.		
3.) (a) For $f(x) = 2x^3$, find an equation of the linear	4.) Let $f(x) = 3(4x-5)^{-2}$		
3.) (a) For $f(x) = 2x$, find an equation of the linear function that best fits f at $x = 1$.	4.) Let $f(x) = 3(4x-5)$		
	(a) What is the slope of the graph at x=2? Justify		
(b) Use the tangent line equation you found in (a) to	your answer.		
approximate $f(1.1)$.			
	(b) Is the function value of f changing more		
(c) Find the actual value of $fig(1.1ig)$ by using the	rapidly at x=3 or at x=1? Justify your answer.		
function $f(x)$. What is the error in your linear	(c) At what value of x is the slope of the graph		
approximation?	undefined? Justify your answer.		
(d) Fill in the blank with < or >. Tangent line approx.			
Actual value What does this tell you about the			
concavity of $f(x)$? Explain.			
5.) Let $f(x) = \frac{x^2 - 1}{x^2 + 1}$	E Net $f(x) = x^2 + 1$ and $f(x) = 4 + 7$		
5.) Let $f(x) = \frac{1}{x^2 + 1}$	5.) Let $f(x) = \frac{x^2 + 1}{x}$ and $g(x) = 4x + 7$		
(a) Determine $f'(x)$	(a) Determine $h(x) = f(x)g(x)$. Write $h'(x)$ as a		
(b) Is the function value of f changing more rapidly at	function of x.		
x=0 or at $x=-2$? Justify your answer.	(b) Is f , g , or h changing more rapidly at x=1?		
	Justify your answer.		
(c) What is the equation of the line tangent to the			
graph of f at x=1?	(c) What is the equation of the line tangent to the graph of h at $x = 12$. Choose the work that leads to		
	graph of <i>h</i> at x=1? Show the work that leads to your conclusion.		
Multiple Choice Practice			
1.) Let $f(x) = x-3 $, then $f'(1)$ is	2.) Let $f(x) = x-3 $, then $f'(3)$ is		
a.) -1 b.) 0 c.) 1 d.) 2 e.) DNE	a.) -1 b.) 0 c.) 1 d.) 2 e.) DNE		

Practice Handout #2 - Definition of the Derivative / Tangent Lines

4.) $\lim_{h \to 0} \frac{(10+h)^3 - 1000}{h} =$ a.) 0 b.) 1 c.) 30 d.) 30	00 e.) 3000	5.) $\lim_{x \to 8} \frac{\sqrt[3]{x-2}}{x-8} =$ a.) 0 b.) $\frac{1}{12}$ c.) $\frac{1}{3}$ d.) $\frac{4}{3}$ e.) DNE		
6.) $\lim_{h \to 0} \frac{\cos\left(\frac{\pi}{3} + h\right) - \frac{1}{2}}{h} =$ $a.) \frac{1}{x} b.) \frac{\sqrt{3}}{2} c.) -\frac{1}{2} d.) \frac{1}{2} e.) \frac{\sqrt{3}}{2}$ $b.) \frac{1}{x} b.) \frac{1}{\ln(x)} c.) \frac{1}{\ln(x)} d.) \frac{1}{a} \frac{1}{x} - \frac{1}{a}$ $b.) \frac{1}{x} b.) \frac{1}{\ln(x)} c.) \frac{1}{\ln(x)} d.) \frac{1}{a} \frac{1}{x} - \frac{1}{a}$				
8.) What does the limit statement represent? a.) 0 c.) $f'(1)$ if $f(x) = \ln a$ b.) $\frac{d}{dx} [\ln(x+1)]$ e.) The exist.	(x+1) d.) 1	$f(x) = (2x+3)^4$ a.) $4(2x+3)^3$ b.) 8	$\begin{array}{c c} 4(2x+3)^3 & \text{b.) } 8(2x+3)^3 \\ 12(2x+3)^2 & \text{d.) } 24(2x+3)^2 \end{array}$	
Derivatives Practice				
1.) $y = (x^4 + 5)^3$	2.) $f(x) = \sqrt{7x} - \frac{1}{2} \sqrt{7x} - \frac{1}{2}$	3.) $g(x) = (x^2 + 9)$	3.) $g(x) = (x^2 + 9x)^{-2}$	
4.) $h(x) = (x^3 + 3x + 9)^{-\frac{4}{3}}$	5.) $y = (4x+9)^{\frac{1}{2}}$	6.) $f(x) = (4 - 2x)$	6.) $f(x) = (4 - 2x - 3x^2)^5$	
7.) $h(x) = (\sqrt{x+1}-1)^{\frac{3}{2}}$ 8	3.) $g(x) = (x+1)^4 (2x-x)^4 (2x-x)^$	$\int_{0}^{3} = 9 - (5 - 2x^{4})$	$\left(\right)^{7} \right)^{3}$	
10.) $f(x) = \frac{(x+1)^{\frac{1}{2}}}{x+2}$ 1	11.) $f(x) = \sqrt{\frac{x+1}{x-1}}$ 12.) $f(x) = \left(\sqrt{x^5 + 4x^3}\right)^7$		$\overline{4x^3}$) ⁷	