POD 2/9/15:

1997 AP Calculus AB: Section I, Part B

x	0	0.5	1.0	1.5	2.0
f(x)	3	3	5	8	13

- 89. A table of values for a continuous function f is shown above. If four equal subintervals of [0,2] are used, which of the following is the trapezoidal approximation of $\int_0^2 f(x) dx$?
 - (A) 8
- (B) 12
- (C) 16
- (D) 24
- (E) 32

THEOREM 4.16 The Trapezoidal Rule

Let f be continuous on [a, b]. The Trapezoidal Rule for approximating $\int_a^b f(x) dx$ is given by

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2n} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)].$$

Moreover, as $n \to \infty$, the right-hand side approaches $\int_a^b f(x) dx$.

Theorem 4.10 Mean Value Theorem for Integrals and Figure 4.30

THEOREM 4.10 Mean Value Theorem for Integrals

If f is continuous on the closed interval [a, b], then there exists a number c in the closed interval [a, b] such that

$$\int_{a}^{b} f(x) dx = f(c)(b - a).$$

Copyright © Houghton Mifflin Company. All rights reserved.

Definition of the Average Value of a Function on an Interval and Figure 4.32

Definition of the Average Value of a Function on an Interval

If f is integrable on the closed interval [a, b], then the **average value** of f on the interval is

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, dx.$$

Copyright @ Houghton Mifflin Company. All rights reserved.

4-27

4-28

Additional Problems from book:

- p.280 #47, 48, 49 (using graphs to integrate)
- p.291 #48, 50 (average value)
- p.292 #54-60 (average value using graph)