lam	ne: Answer Key	Date:		_	riod:		
		ence 1 st semest					
	Unit 3 (Work, Pow		-		& Heat)		
1.	Work (write yes or no to indicate if work i		-	-			
	a. Lifting a book YES	c. Pushing a s				pushing on a wall YES	
~	b. Carrying a book to your desk NO	d. Holding we	eights ove	er your head	NO f.	kicking a ball NO	
2.	Work problems (SHOW WORK) a. How much work is done if 25 N of force is used to move a rock 5 m?						
					495.1		
	F = 25 N	W = F * d	\rightarrow	25N * 5m =	125 J		
	d = 5 m	wiftyou did 40	l of work?	5			
	b. How high did you lift your 12 N siste	-			4		
	W = 48 J	d = W/F	\rightarrow	48J/12N = 4	4 M		
	F = 12 N	object 15 m w	hat is its ,	waight (fares	12		
	 c. If 70 J of work is needed to move an W = 70 J 	F = W/d	\rightarrow	70J/15m =			
	d = 15 m	r – vv/u	/	/0/15111-	4.07 N		
3	What can a machine multiply? A machine	can multiply fo	orce				
		chanical Advantage problems (SHOW WORK)					
	a. What is the mechanical advantage of		apply 14	N of force to	lift a c	ar that weighs 1400 N?	
	Input Force = 14 N	$MA = F_R/F_E$	→	1400N/14N			
	Output Force = 1400 N			110010/11			
	b. What is the mechanical advantage c	of a ramp that is	s 250 m lo	ong and 50 m	high?		
	Input distance = 250 m	MA = De/Dr	\rightarrow	250m/50m			
	Output distance = 50 m	- ,					
5.	What is efficiency? Efficiency is the perce	ntage of work i	nput that	t becomes w	ork out	tput.	
6.	Why is the efficiency of a machine always less than 100 percent? Because there is always some friction.						
7.	Give 2 examples of each simple machine:						
	a. Inclined plane - Ramp						
	b. Lever – See saw, nutcracker, scissor	rs					
	c. Wedge – <mark>Axe, zipper</mark>						
	Wheel and axle – Steering wheel						
	e. Screw – Screwdriver, twist bottle ca	ap					
	f. Pulley – Flag pole						
8.	What is kinetic energy? (Define and write	the formula) <mark>Ki</mark>	netic ene				
	Kinetic Energy is: $KE = 1/2mv^2$					velocity (m/s)	
9.	What is potential energy? (Define and write	• •					
	position or height. The formula for Poter					gravity (9.8m/s ²), height (r	
10.	What is the kinetic energy of a 15 kg rock rolling down a hill at 2.5 m/s? (SHOW WORK)						
	Givens: KE = ? m = 15 kg	v = 2.5 m/s					
	$KE = \frac{1}{2}m^* v^2 \rightarrow (\frac{1}{2})(15kg)(2.5m)$.88 J		
11.	What is the potential energy of a 1.25 kg book sitting on a shelf 4.5 meters high if gravity is 9.8 m/s ² ? (SHOW						
	WORK)						
	<i>Givens: PE = ? m = 1.25 kg</i>	5 .	h = 4.5				
	$PE = mgh \rightarrow (1.25kg)(9.8 \text{ m/s}^2)(4.5)$			= 55.	.125 J		
12.	Give 2 examples of each of the following t	ypes of energy					
	a. Chemical: gasoline, food						
	b. Elastic potential: rubber band, bung	gee cord					
	c. Thermal: bonfire, lit match						
	d. Nuclear: nuclear power plant, sun,						
	e. Mechanical: riding a bicycle, rowing	g a poat					

- f. Kinetic: a cheetah running, a sprinter
- g. Gravitational potential: a book on a shelf, a roller coaster at the top of the ride
- h. Electrical: blender, radio

- 13. What does the law of conservation of energy state? Energy cannot be created or destroyed.
- 14. When does the kinetic energy of a roller coaster increase the most? At the bottom of the roller coaster.
- 15. Where does a pendulum have the most potential energy? At its highest point. The most kinetic energy? At its lowest point.
- 16. Define heat: the transfer of thermal energy from one object to another because of a temperature difference.
- 17. Define temperature: a measure of how hot or cold an object is compared to a reference point.
- 18. As the temperature of an object increases what happens to the thermal energy? The thermal energy increases.
- 19. The specific heat of copper is 0.385 J/g°C. What is the energy needed to heat 2.75 g of copper from 14°C to 35°C? *Givens:* Q = ? m = 2.75g c = 0.385 J/g°C $\Delta T = 35°C - 14°C = 21°C$
- Q = mc Δ T → (2.75g)(is 0.385 J/g°C)(21°C) = **22.23 J**
- 20. Describe the three ways energy transfers.
 - a. Conduction the transfer of thermal energy as a result of direct contact (touching); requires matter.
 - b. Convection the transfer of thermal energy through fluids such as liquids and gases; requires matter.
 - c. Radiation the transfer of thermal energy by waves moving through space; does not require matter.
- 21. Which method of energy transfer does not need matter? Radiation
- 22. Which method(s) of energy transfer needs matter? Conduction and Convection
- 23. Define conductor. A conductor is a material that transfers thermal energy easily. Metals are good conductors.
- 24. Give two examples of conductors: Metals such as copper, silver, gold, and iron.
- 25. Define insulator. An insulator is a material that is a poor conductor because it doesn't transfer thermal energy well. Plastic and wood are good insulators.
- 26. Give two examples of insulators: Rubber, plastic, wood, paper, fleece, fiber glass.