Name: Answer Key	Date:	Physical Science Period:
	Mixed Word Problem	1 Practice
Measurement	Symbol	Unit
Distance	d	m
Time	t	S
Velocity	v (or s)	m/s
Mass	m	g or kg
Acceleration	a	m/s ²
Weight	W	N newton
Force	F	Ν
Volume	V	cm ³ or mL
Heat	Q	J
Specific heat	С	J/g °C
Temperature	Т	K or °C
Current	Ι	A amps
Resistance	R	Ω ohms
Voltage	V	V volts
Energy	KE or PE	J jouls

Solve the following problems. Show your work with units.

1. During a race, a runner runs at a speed of 6 m/s. 2 seconds later, she is running at a speed of 10 m/s. What is the runner's acceleration? Show your work.

Vf = 10m/s	$\mathbf{a} = \mathbf{V}\mathbf{f} - \mathbf{V}\mathbf{i}$	(<u>10 m/s – 6m/s</u>)	\rightarrow	2 m/s^2
Vi = 6m/s	t	2s		
t - 2a				

2. If you ride your bike at an average speed of 4 km/h and need to travel a total distance of 28 km, how long will it take you to reach your destination? Show your work.

avg. $v = 4 \text{ km/h}$	$\mathbf{v} = \mathbf{\underline{d}} \mathbf{OF}$	$\mathbf{t} = \mathbf{\underline{d}}$	<u>28 km</u>	→it will take you <mark>7 hours</mark>
total $d = 28 \ km$	t	v	4 km/h	
t = ?				

3. A tow truck exerts a net horizontal force of 1050 N on a 760-kilogram car. What is the acceleration of the car during this time? Show your work.

F = 1050 N	$\mathbf{F} = \mathbf{m}^* \mathbf{a} \mathbf{OR} \mathbf{a} = \mathbf{F}$	<u>1050N</u>	\rightarrow	1.38 m/s ²
$m = 760 \ kg$	m	760 kg		
a = ?				

4. The mass of a newborn baby is 3.5 kilograms. What is the baby's weight? (The acceleration due to gravity at Earth's surface is 9.8 m/s².) Show your work.

$m = 3.5 \ kg$	$W = m^*g$	3.5 kg * 9.8 m/s ² →	34.3 N
$g = 9.8 \ m/s^2$			
w = ?			

5. A small engine causes a 0.3-kg model airplane to accelerate at a rate of 11 m/s². What is the net force on the model airplane? Show your work.

F = ? F = m*a $0.3 \text{ kg} * 11 \text{ m/s}^2 \rightarrow 3.3 \text{ N}$ m = 0.3 kg $a = 11 \text{ m/s}^2$

6. A worker uses a cart to move a load of bricks weighing 680 N a distance of 10 m across a parking lot. If he pushes the cart with a constant force of 209 N, what amount of work does he do? Show your work.

320 W

$$F = 209 \text{ N} \qquad W = F^* \text{d} \qquad 209 \text{ N} * 10 \text{ m} \rightarrow 2090 \text{ J}$$

$$d = 10 m$$
$$W = ?$$

7. A girl lifts a 160-N load to a height of 1 m in 0.5 s. What power does the girl produce? Show your work.

$$F = 160 N \qquad P = \underbrace{W}_{t} OR \quad (\underbrace{f^*d}_{t}) \qquad (\underbrace{160 N * 1 m}_{0.5 s}) \rightarrow$$

$$d = 1 m \qquad t \qquad t \qquad 0.5 s$$

$$P = ?$$

The input force of a pulley system must move 8.0 m to lift a 3000-N engine a distance of 2.0 m. What is the IMA of 8. the system? Show your work.

IMA = ?	$MA = \underline{De}$	<u>8.0 m</u>	\rightarrow	4
De = 8.0 m	Dr	2.0 m		
Dr = 2.0 m				

9. A 20-N force applied to the handle of a door produces a 44-N output force. What is the AMA of the handle? Show your work.

Fr = 44 N	MA = Fr	<u>44 N</u>	\rightarrow	2.2
Fe = 20 N	Fe	20 N		
MA = ?				

10. What is the kinetic energy of a 72.0-kg sky diver falling at a terminal velocity of 79.0 m/s? Show your work.

KE = ?KE =
$$\frac{1}{2}$$
*m*v² $(\frac{1}{2})(72.0 \text{ kg})(79.0 \text{ m/s})^2$ m = 72.0 kg= (36) * (6241) \rightarrow 224, 676 J

- v = 79.0 m/s
- 11. A 0.47-kg squirrel jumps from a tree branch that is 3.5 m high to the top of a bird feeder that is 1.2 m high. What is the change in gravitational potential energy of the squirrel? (The acceleration due to gravity is 9.8 m/s².) Show your work.
 - GPE = ?GPE = mgh $(0.47 \text{ kg})(9.8 \text{ m/s}^2)(2.3 \text{ m}) \rightarrow$ 10.59 J $m = 0.47 \, kg$ $g = 9.8 m/s^2$ h = 3.5 m - 1.2 m = 2.3 m
- 12. A small dog is trained to jump straight up a distance of 1.2 m. How much gravitational potential energy does the 7.2 kg dog need to jump this high? (The acceleration due to gravity is 9.8 m/s^2 .) Show your work.
 - GPE = ?GPE = mgh $(7.2 \text{ kg})(9.8 \text{ m/s}^2)(1.2 \text{ m}) \rightarrow$ 84.67 J $m = 7.2 \ kg$ $g = 9.8 m/s^2$
 - h = 1.2 m
- 13. How many kilojoules of heat must be transferred to a 480-g aluminum pizza pan to raise its temperature from 22°C to 234°C? The specific heat of aluminum in this temperature range is 0.96 J/g·°C. Show your work.

 $(480 \text{ g})(0.96 \text{ J/g}^{\circ}\text{C})(212 \text{ }^{\circ}\text{C}) \rightarrow 97689.6 \text{ J}$ **O** = ? $\mathbf{O} = \mathbf{mc}\Delta\mathbf{T}$ m = 480 g $c = 0.96 J/g \cdot C$

$$\Delta T = 234^{\circ}C - 22^{\circ}C = 212^{\circ}C$$

14. As 390 g of hot milk cools in a mug, it transfers 30,000 J of heat to the environment. What is the temperature change of the milk? The specific heat of milk is 3.9 J/g°C. Show your work.

Q = 30,000 J	$\Delta \mathbf{T} = \mathbf{Q}$	<u>30,000 J</u> →	<u>30,000J</u> →	19.72 °С
m = 390 g	mc	(390g)(3.9 J/g °C)	1521 J/°C	
$c = 3.9 J/g \cdot °C$				

$$\Delta T = ?$$

15. What is the acceleration of a car that goes from 20 km/h to 100 km/h in 2 hours?

<i>a</i> = ?	$\mathbf{a} = \mathbf{V}\mathbf{f} - \mathbf{V}\mathbf{i}$	<u>100 km/h –</u>	20 km/h	\rightarrow	40 km/h
Vf = 100 km/h	t	2 h	rs		
Vi = 20 km/h					
t = 2 hrs					
object moves 20 k	m in 5 h, what is its speed?				
v = ?	$\mathbf{v} = \mathbf{d}$	<u>20 km</u>	\rightarrow		4 km/hr

16. An

v = ?	$\mathbf{v} = \mathbf{\underline{d}}$	$20 \text{ km} \rightarrow$	4 km/h
d = 20 km	t	5 hr	
t = 5 hr			

17. If the force on an object is 14 N and the object has a mass of 3.5 kg what is its acceleration?

F = 14 N	$\mathbf{F} = \mathbf{m}^* \mathbf{a} \mathbf{OR} \mathbf{a} = \underline{\mathbf{F}}$	<u>14N</u> \rightarrow	4 m/s ²
m = 3.5 kg	m	3.5kg	
a = ?			