PowerPoint<sup>®</sup> Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

**The Urinary** 

**System** 

# ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY

NINTH EDITION

ELAINE N. MARIEB

PART B

## **Ureters**

- Slender tubes attaching the kidney to the bladder
  - Continuous with the renal pelvis
  - Enter the posterior aspect of the bladder
- Runs behind the peritoneum
- Peristalsis aids gravity in urine transport

# **Organs of the Urinary System**



(a)

Figure 15.1a

# **Urinary Bladder**

- Smooth, collapsible, muscular sac
- Temporarily stores urine
- Trigone—triangular region of the bladder base
  - Three openings
    - Two from the ureters
    - One to the urethra
  - In males, the prostate gland surrounds the neck of the bladder

# **Female Urinary Bladder and Urethra**



Figure 15.6

# **Urinary Bladder Wall**

- Three layers of smooth muscle collectively called the detrusor muscle
- Mucosa made of transitional epithelium
- Walls are thick and folded in an empty bladder
- Bladder can expand significantly without increasing internal pressure

#### **Urinary Bladder Capacity**

- A moderately full bladder is about 5 inches long and holds about 500 mL of urine
- Capable of holding twice that amount of urine

# Position and Shape of a Distended and an Empty Urinary Bladder in an Adult Man



# **Urethra**

- Thin-walled tube that carries urine from the bladder to the outside of the body by peristalsis
- Release of urine is controlled by two sphincters
  - Internal urethral sphincter
    - Involuntary and made of smooth muscle
  - External urethral sphincter
    - Voluntary and made of skeletal muscle

# **Female Urinary Bladder and Urethra**



Figure 15.6

# **Urethra Gender Differences**

- Length
  - Females is 3–4 cm (1 inch)
  - Males is 20 cm (8 inches)
- Location
  - Females—along wall of the vagina
  - Males—through the prostate and penis

## **Urethra Gender Differences**

#### Function

- Females—only carries urine
- Males—carries urine and is a passageway for sperm cells

# **Micturition (Voiding)**

- Both sphincter muscles must open to allow voiding
- The internal urethral sphincter is relaxed after stretching of the bladder
- Pelvic splanchnic nerves initiate bladder to go into reflex contractions
- Urine is forced past the internal urethra sphincter and the person feels the urge to void
- The external urethral sphincter must be voluntarily relaxed to void

# Fluid, Electrolyte, and Acid-Base Balance

#### Blood composition depends on three factors

- Diet
- Cellular metabolism
- Urine output

# Fluid, Electrolyte, and Acid-Base Balance

- Kidneys have four roles in maintaining blood composition
  - Excretion of nitrogen-containing wastes (previously discussed)
  - Maintaining water balance of the blood
  - Maintaining electrolyte balance of the blood
  - Ensuring proper blood pH

#### **Maintaining Water Balance**

- Normal amount of water in the human body
  - Young adult females = 50%
  - Young adult males = 60%
  - Babies = 75%
  - The elderly = 45%

 Water is necessary for many body functions, and levels must be maintained

# **Distribution of Body Fluid**

- Intracellular fluid (ICF)
  - Fluid inside cells
  - About two-thirds of body fluid
- Extracellular fluid (ECF)
  - Fluids outside cells that includes
    - Interstitial fluid
    - Blood plasma

# **Major Fluid Compartments of the Body**

| Total body water volume =                             |                                                               |                                            |
|-------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|
| 40 L, 60% body weight                                 |                                                               |                                            |
|                                                       | Extracellular fluid<br>(ECF) volume =15 L,<br>20% body weight |                                            |
| Intracellular fluid volume =<br>25 L, 40% body weight | Interstitial<br>fluid<br>volume =<br>12 L, 80%<br>of ECF      | Plasma<br>volume<br>=3 L,<br>20% of<br>ECF |

Figure 15.8

# The Continuous Mixing of Body Fluids



Figure 15.9

## **The Link Between Water and Salt**

- Solutes in the body include electrolytes like sodium, potassium, and calcium ions
- Changes in electrolyte balance causes water to move from one compartment to another
  - Alters blood volume and blood pressure
  - Can impair the activity of cells

#### **Maintaining Water Balance**

- Water intake must equal water output
- Sources for water intake
  - Ingested foods and fluids
  - Water produced from metabolic processes
- Thirst mechanism is the driving force for water intake

## **Maintaining Water Balance**

- Sources for water output
  - Vaporization out of the lungs
  - Lost in perspiration
  - Leaves the body in the feces
  - Urine production

# Water Intake and Output



#### **Maintaining Water Balance**

- Dilute urine is produced if water intake is excessive
- Less urine (concentrated) is produced if large amounts of water are lost
- Proper concentrations of various electrolytes must be present

- Osmoreceptors
  - Cells in the hypothalamus
  - React to changes in blood composition by becoming more active

- Regulation occurs primarily by hormones
  - Antidiuretic hormone (ADH)
    - Prevents excessive water loss in urine
    - Causes the kidney's collecting ducts to reabsorb more water
  - Diabetes insipidus
    - Occurs when ADH is not released
    - Leads to huge outputs of dilute urine

- Regulation occurs primarily by hormones (continued)
  - Aldosterone
    - Regulates sodium ion content of ECF
    - Sodium is the electrolyte most responsible for osmotic water flows
    - Aldosterone promotes reabsorption of sodium ions
    - Remember, water follows salt!

- Renin-angiotension mechanism
  - Mediated by the juxtaglomerular (JG) apparatus of the renal tubules
  - When cells of the JG apparatus are stimulated by low blood pressure, the enzyme renin is released into blood
  - Renin produces angiotension II
  - Angiotension causes vasconstriction and aldosterone release
  - Result is increase in blood volume and blood pressure









































# **Maintaining Acid-Base Balance in Blood**

- Blood pH must remain between 7.35 and 7.45 to maintain homeostasis
  - Alkalosis—pH above 7.45
  - Acidosis—pH below 7.35
  - Physiological acidosis—pH between 7.35 and 7.0
- Most ions originate as by-products of cellular metabolism

# **Maintaining Acid-Base Balance in Blood**

- Acids produced by the body
  - Phosphoric acid, lactic acid, fatty acids
  - Carbon dioxide forms carbonic acid
  - Ammonia
- Most acid-base balance is maintained by the kidneys
- Other acid-base controlling systems
  - Blood buffers
  - Respiration

# **Blood Buffers**

#### Acids are proton (H<sup>+</sup>) donors

- Strong acids dissociate completely and liberate all of their H<sup>+</sup> in water
- Weak acids, such as carbonic acid, dissociate only partially
- Bases are proton (H<sup>+</sup>) acceptors
  - Strong bases dissociate easily in water and tie up H<sup>+</sup>
  - Weak bases, such as bicarbonate ion and ammonia, are slower to accept H<sup>+</sup>

# **Dissociation of Strong and Weak Acids**



**Figure 15.12** 

# **Blood Buffers**

- Molecules react to prevent dramatic changes in hydrogen ion (H<sup>+</sup>) concentrations
  - Bind to H<sup>+</sup> when pH drops
  - Release H<sup>+</sup> when pH rises
- Three major chemical buffer systems
  - Bicarbonate buffer system
  - Phosphate buffer system
  - Protein buffer system

# **The Bicarbonate Buffer System**

- Mixture of carbonic acid (H<sub>2</sub>CO<sub>3</sub>) and sodium bicarbonate (NaHCO<sub>3</sub>)
  - Carbonic acid is a weak acid that does not dissociate much in neutral or acid solutions
  - Bicarbonate ions (HCO<sub>3</sub><sup>-</sup>) react with strong acids to change them to weak acids HCI + NaHCO<sub>3</sub> → H<sub>2</sub>CO<sub>3</sub> + NaCI

strong acid weak base weak acid salt

#### **The Bicarbonate Buffer System**

 Carbonic acid dissociates in the presence of a strong base to form a weak base and water NaOH + H<sub>2</sub>CO<sub>3</sub> → NaHCO<sub>3</sub> + H<sub>2</sub>O

strong base weak acid weak base water

# **Respiratory System Controls of Acid-Base Balance**

- Carbon dioxide in the blood is converted to bicarbonate ion and transported in the plasma
- Increases in hydrogen ion concentration produces more carbonic acid
- Excess hydrogen ion can be blown off with the release of carbon dioxide from the lungs
- Respiratory rate can rise and fall depending on changing blood pH

# **Renal Mechanisms of Acid-Base Balance**

- Excrete bicarbonate ions if needed
- Conserve (reabsorb) or generate new bicarbonate ions if needed

# **Renal Mechanisms of Acid-Base Balance**

- When blood pH rises
  - Bicarbonate ions are excreted
  - Hydrogen ions are retained by kidney tubules
- When blood pH falls
  - Bicarbonate ions are reabsorbed
  - Hydrogen ions are secreted
- Urine pH varies from 4.5 to 8.0

# **Developmental Aspects of the Urinary System**

- Functional kidneys are developed by the third month
- Urinary system of a newborn
  - Bladder is small
  - Urine cannot be concentrated for first 2 months
  - Void 5 to 40 times per day

# **Developmental Aspects of the Urinary System**

- Control of the voluntary urethral sphincter does not start until age 18 months
- Complete nighttime control may not occur until the child is 4 years old
- Urinary infections are the only common problems before old age
  - Escherichia coli (E. coli), a type of bacteria, accounts for 80% of UTI (urinary tract infections)

# Aging and the Urinary System

- There is a progressive decline in urinary function
- The bladder shrinks and loses bladder tone with aging

# Aging and the Urinary System

- Associated problems with aging
  - Urgency—feeling that it is necessary to void
  - Frequency—frequent voiding of small amounts of urine
  - Nocturia—need to get up during the night to urinate
  - Incontinence—loss of control
  - Urinary retention—common in males, often the result of hypertrophy of the prostate gland