Post Exam Set #4

AP Calculus - Multiple Choice

Limits / Continuity/ Differentiability

No Calculator – You will have just under 2 minutes per question.	
1.) The graph of the function f is shown. Which of the fo	llowing
statements is false? [#5]	6
(A) $\lim_{x \to 2} f(x)$ exists (B) $\lim_{x \to 3} f(x)$ exists	5
(C) $\lim_{x \to 4} f(x)$ exists (D) $\lim_{x \to 5} f(x)$ exists	
(E) The function f is continuous at $x = 3$.	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\int \frac{2x+1}{2x+1} = x-2 \text{for} x \neq 2$	3.) Let <i>f</i> be the function defined by $f(x) = \sqrt{ x-2 }$ for
$\int (x) = \begin{cases} x-2 \\ b \\ c \\ c$	all x. Which of the following statements is true?
$\binom{k}{101}$ $x = 2$	(A) f is continuous but not differentiable at $x = 2$.
2.) Let f be the function defined above. For what value	(B) f is differentiable at $x = 2$.
of k is f continuous at $x = 2$? [#9]	(C) f is not continuous at $x = 2$.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(D) $\lim_{x \to 2} f(x) \neq 0$
	(E) $x = 2$ is a vertical asymptote of the graph of f .
4.) $\lim_{h \to 0} \frac{\ln 4 + h - \ln 4}{h} =$	
[#18]	
a.) 0 $\left \begin{array}{c} 1 \\ b. \end{array} \right \left \begin{array}{c} 1 \\ 4 \end{array} \right \left \begin{array}{c} c. \end{array} \right \left \begin{array}{c} d. \right) e \\ e. \right $ nonexistent	
5.) Let $f(x) = 2x + 1^{3}$ and let g be the inverse	6.) The line $y = 5$ is a horizontal asymptote to the graph of which of the following functions? [#21]
function of f. Given that $f(0) = 1$, what is the value of	of which of the following functions? [#21]
g'(1)? [#20]	(A) (B) $y = 5x$ (E) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
$(A) - \frac{2}{27} (B) \frac{1}{54} (C) \frac{1}{27} (D) \frac{1}{6} (E) 6$	$y = \frac{\sin(3x)}{x}$ $y = \frac{20x^2 - x}{1 + 4x^2}$
	(C) $y = \frac{1}{x-5}$ (D) $y = \frac{5x}{1-x}$
7.) Let f be a function that is continuous on the closed interval $[2, 4]$ with $f(2) = 10$ and $f(4) = 20$. Which of	
the following is guaranteed by the Intermediate Value Theorem? [#77]	
(A) $f(x) = 13$ has at least one solution in the open interval (2, 4).	
(B) f (3) = 15 $(C) f attains a maximum on the open interval (2, 4)$	
(c) f attains a maximum on the open interval (2, 4). (D) $f'(x) = 5$ has at least one solution in the open interval (2, 4).	
(U) $\int (x) - 3$ has at least one solution in the open interval (2, 4).	

