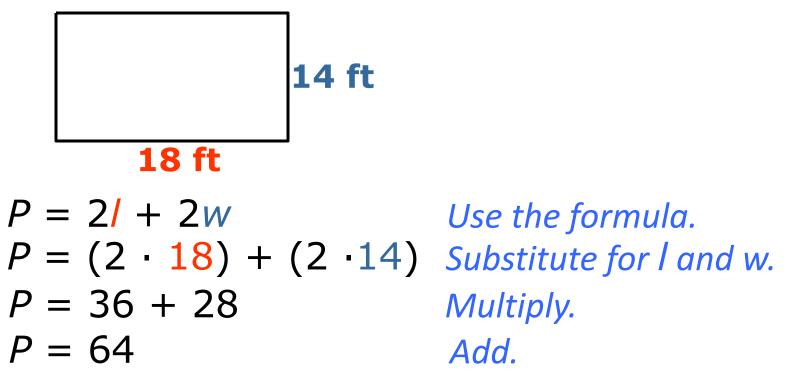

Warm Up Simplify. **1.** 8² 64 **2.** 12² 144 **3.** 6.2² 38.44 **4.** 7.5² 56.25

Perimeter, Circumference, and Area

7th Grade Book 12-1 and 12-2 my.hrw.com **Perimeter** is the distance around a geometric figure. To find the perimeter *P* of a polygon, you can add the lengths of its sides.

Additional Example 1: Finding the Perimeter of a Polygon

Find the perimeter.


The perimeter of the triangle is 65 cm.

-	100	(Billion		1.00	1000	- 1	-	-		-	 Sec. Sec.		2000	_
			 								 COLUMN T	 1	-	100
-			1.71	IE 1				-						
	-								171.3					

The perimeter P of a rectangle is the sum of twice its length ℓ and twice its width w .	$P = 2\ell + 2w$	e
--	------------------	---

Additional Example 2: Using Properties of a Rectangle to Find Perimeter

Find the perimeter of a rectangle.

The perimeter of the rectangle is 64 ft.

The distance around a circle is called **circumference**. For every circle, the ratio of circumference *C* to diameter *d* is the same. This ratio, $\frac{C}{d}$, is represented by the Greek letter π , called **<u>pi</u>**. *Pi* is approximately equal to 3.14 or $\frac{22}{7}$. By solving the equation $\frac{C}{d} = \pi$ for *C*, you get the formula for circumference.

CIRCUN	IFERENCE OF A	CIRCLE
The circumference <i>C</i> of a circle is π times the diameter <i>d</i> , or 2π times the radius <i>r</i> .	$C = \pi d$ or $C = 2\pi r$	Radius Diameter Circumference

Additional Example 3A: Finding the Circumference of a Circle

Find the circumference of the circle to the nearest tenth. Use 3.14 for π .

The circumference of the circle is about 37.7 in.

Additional Example 3B: Finding the Circumference of a Circle

Find the circumference of the circle to the nearest tenth. Use 3.14 for π .

$$C = 2\pi r$$

$$C = 2\pi r$$

$$C \approx 2 \cdot 3.14 \cdot 18$$

$$C \approx 113.04$$

$$You know the radius.$$

$$You know the radius.$$

$$You know the radius.$$

$$Substitute for \pi and r.$$

$$Multiply.$$

The circumference of the circle is about 113.0 cm.

Helpful Hint

If the diameter or radius of a circle is a multiple of 7, use²² ⁷ for π .

Additional Example 4: *Application*

The diameter of a circular pond is 42 m. What is its circumference? Use $\frac{22}{22}$ for π .

You know the diameter.

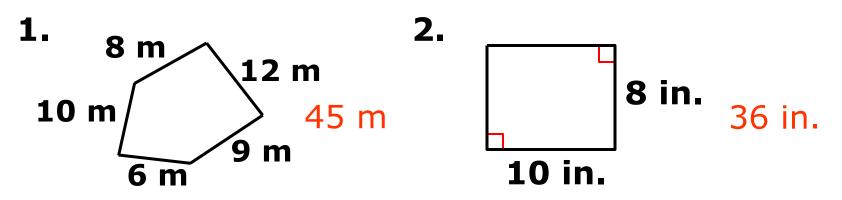
Substitute $\frac{22}{7}$ for π and 42 for d.

Write 42 as a fraction.

Simplify.

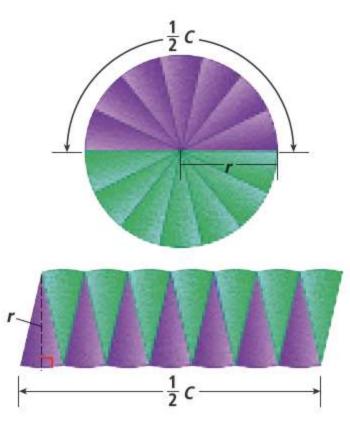
 $C \approx 132$ Multiply.

 $C = \pi d$


 $C \approx \frac{22}{7} \cdot 42$

 $C \approx \frac{22}{7} \cdot \frac{42}{1}$

 $C \approx \frac{22}{7} \cdot \frac{42}{1}^{6}$


The circumference of the pond is about 132 m.

- **3.** What is the circumference of a circle with a a radius of 8 inches? Use 3.14 for π . 50.24 in.
- **4.** If a guardrail is to be placed around the edge of a circular swimming pool with a diameter of 21 ft, how many feet of railing will be needed? Use $\frac{22}{7}$ for π . 66 ft

A circle can be cut into equalsized sectors and arranged to resemble a parallelogram. The height *h* of the parallelogram is equal to the radius *r* of the circle, and the base *b* of the parallelogram is equal to one-half the circumference *C* of the circle.

So the area of the parallelogram can be written as

$$A = bh$$
, or $A = \frac{1}{2}Cr$.
Since $C = 2\pi r$, $A = \frac{1}{2}(2\pi r)r = \pi r^2$.

AREA C	OF A CIRCLE	
The area A of a circle is the product of π and the square of the circle's radius r.	$A = \pi r^2$	r

Additional Example 1A: Finding the Area of a Circle

Find the area of the circle to the nearest tenth. Use 3.14 for π .

7 cm $A = \pi r^2$ Use the formula.7 cm $A \approx 3.14 \cdot 7^2$ Substitute 7 for r. $A \approx 3.14 \cdot 49$ Evaluate the power. $A \approx 153.86$ Multiply.

The area of the circle is about 153.9 cm².

Remember!

The order of operations calls for evaluating the exponents before multiplying.

Additional Example 1B: Finding the Area of a Circle

Find the area of the circle to the nearest tenth. Use 3.14 for π .

	$A = \pi r^2$	Use the formula.
18 ft	<i>A</i> ≈ 3.14 • 9 ²	Substitute 9 for r.
	<i>A</i> ≈ 3.14 • 81	Evaluate the power.
	<i>A</i> ≈ 254.34	Multiply.

The area of the circle is about 254.3 ft².

Additional Example 2: *Application*

Park employees are fitting a top over a circular drain in the park. If the radius of the drain is 14 inches, what is the area of the top that will cover the drain? Use $\frac{22}{7}$ for π .

 $A = \pi r^2$ Use the formula for the area of a circle. $A \approx \frac{22}{7} \cdot 14^2$ Substitute. Use 14 for r. $A \approx \frac{22}{17} \cdot 196^{28}$ Evaluate the power. $A \approx 22 \cdot 28$ Multiply.

The area of the top that will cover the drain is about 616 in².

Additional Example 3: Application Find the area of the shaded region of the circle. Use 3.14 for π . Round your answer to the nearest tenth.

The measurement of the radius of the circle is 1.5 cm.

Now find the area of the entire circle.

- $A = \pi r^2$ Use the formula for the area of a circle.
- $A = 3.14 \cdot 1.5^2$ Substitute. Use 1.5 for r.
- $A \approx 3.14 \cdot 2.25$ Evaluate the power.

 $A \approx 7.07$ Multiply.

Additional Example 3 Continued

Find the area of the shaded region of the circle. Use 3.14 for π . Round your answer to the nearest tenth.

Since $\frac{1}{2}$ of the circle is shaded, divide the area of the circle by 2. 7.07 ÷ 2 = 3.535.

The area of the shaded region of the circle is about 3.5 cm².

Check It Out: Example 3

Find the area of the shaded region of the circle. Use 3.14 for π . Round your answer to the nearest tenth.

The measurement of the radius of the circle is 2.4 cm.

Now find the area of the entire circle.

- $A = \pi r^2$ Use the formula for the area of a circle.
- $A = 3.14 \cdot 2.4^2$ Substitute. Use 2.4 for r.
- $A \approx 3.14 \cdot 5.76$ Evaluate the power.
- $A \approx 18.09$ *Multiply*.

Check It Out: Example 3 Continued

Find the area of the shaded region of the circle. Use 3.14 for π . Round your answer to the nearest tenth.

Since $\frac{3}{4}$ of the circle is shaded, divide the area of the circle by 4 and subtract the answer from the entire area. 18.0864 ÷ 4 = 4.52. 18.0864 - 4.52 = 13.56.

The area of the shaded region of the circle is about 13.56 cm².

Lesson Quiz

Find the area of each circle, to the nearest tenth. Use 3.14 for π .

3. The bull's-eye on a target has a diameter of 2 in. What is the area of the bull's-eye to the nearest tenth? Use 3.14 for π . **3.1** in²

4. A round table cloth has a radius of 36 in. What is the area of the table cloth? Use 3.14 for π . Round your answer to the nearest tenth.

4,069.4 in²