
AP Calculus

f,f', & f" #4

1980 BC 7

Let *f* be a function that has domain the closed interval [-1,4] and range the closed interval [-1,2]. Let f(-1) = -1, f(0) = 0, and f(4) = 1. Also let *f* have the derivative function f' that is continuous and that has the graph shown in the figure above.

- (a) Find all values of x for which f assumes a relative maximum. Justify your answer.
- (b) Find all values of x for which f assumes a relative minimum. Justify your answer.
- (c) Find the intervals on which f is concave downward.
- (d) Give all values of x for which f has a point of inflection.
- (e) Sketch the graph of f.

1984 AB 4 and BC 3 (Hint: do part c first)

A function *f* is continuous on the closed interval [-3,3] such that f(-3) = 4 and f(3) = 1. The function *f'* and *f''* have the properties given in the table below.

x	-3 < x < -1	x = -1	-1 < x < 1	<i>x</i> =1	1 < <i>x</i> < 3
f'(x)	Positive	Fails to exist	Negative	0	Negative
f''(x)	Positive	Fails to exits	Positive	0	Negative

(a) What are the *x*-coordinates of all absolute maximum and absolute minimum points of f on the interval [-3,3]? Justify your answer.

- (b) What are the x-coordinates of all points of inflection of f on the interval [-3,3]? Justify your answer.
- (c) Sketch a graph that satisfies the given properties of f.