Name:						Period:		

Unit 5 – Antiderivatives

Section 4.4 The Fundamental Theorem of Calculus

Objective: In this lesson you learned how to evaluate a definite integral using the Fundamental Theorem of Calculus.

I. The Fundamental Theorem of Calculus (Pages 277-279)

You have now been introduced to the two major branches of calculus: ______ (introduced with the tangent line problem) and ______ (introduced with the area problem).

Informally, the theorem states that differentiation and (definite) integration are ______, in the same sense that division and multiplication are inverse operations. The slope of the tangent line was defined using the ______ (the slope of the secant line). Similarly, the area of a region under a curve was defined using the ______ (the area of a rectangle).

The Fundamental Theorem of Calculus

If a function f is continuous on the closed interval [a, b] and F is an antiderivative of f on the interval [a, b], then

$$\int_{a}^{b} f(x) \, dx = \underline{\qquad}$$

3. It is not necessary to include a constant of integration *C* in the antiderivative.

$$\int_{a}^{b} f(x) \, dx = \underline{\qquad} = \underline{\qquad} = \underline{\qquad}$$

Example 1:
$$a \cdot \int_{1}^{4} (x^2 - 4) dx$$
 $b \cdot \int_{1}^{4} 2\sqrt{x} dx$ $c \cdot \int_{\pi/4}^{\pi/3} \sec^2 x dx$

Example 2: A Definite Integral Involving Absolute Value Evaluate $\int_0^4 |3x - 1| dx$