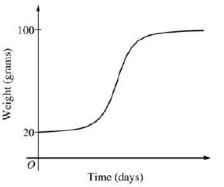
AP Calculus - Free Response


Post Exam Set #1

Exam Problem #5.) The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time t = 0, when the bird is first weighed, its weight is 20 grams. If B(t) is the weight of the bird, in grams, at time t days after it is first weighed, then

$$\frac{dB}{dt} = \frac{1}{5}(100 - B)$$

Let y = B(t) be the solution to the differential equation above with initial condition B(0) = 20. (a) Is the bird gaining weight faster when it weighs 40 grams or when it weighs 70 grams? Explain your reasoning.

(b) Find $\frac{d^2B}{dt^2}$ in terms of *B*. Use $\frac{d^2B}{dt^2}$ to explain why the graph of *B* cannot resemble the following graph.

(c) Use separation of variables to find y = B(t), the particular solution to the differential equation with initial condition B(0) = 20.

Practice #1 Consider the differential equation $\frac{dy}{dx} = e^y (3x^2 - 6x)$. Let y = f(x) be the particular

solution to the differential equation that passes through (1,0). (2013 AB6)

(a) Write an equation for the line tangent to the graph of f at the point (1,0). Use the tangent line to approximate f(1.2).

(b) Find y = f(x), the particular solution to the differential equation that passes through (1,0)

y 1	Practice #2 - Consider the differential equation $\frac{dy}{dx} = \frac{x+1}{y}$.	
• 2• •	(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and for $-1 < x < 1$, sketch the solution curve that passes through the point (0, -1).	
• 1• •	(b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the <i>xy</i> -plane for which $y \neq 0$. Describe	
-1 O 1 x	all points in the <i>xy</i> -plane, $y \neq 0$, for which $\frac{dy}{dx} = -1$.	
• -1 • •	(c) Find the particular solution $y = f(x)$ to the given differential equation with the initial condition $f(0) = -2$.	
	(2010 ABB5)	
• -2• •		
Practice #3 - Consider the differential equation $\frac{dy}{dx} = x^4(y-2)$.		y 1
(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.		
(b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the <i>xy</i> -plane. Describe all points in the <i>xy</i> -plane for which the slopes are negative.		• 2• •
(c) Find the particular solution $y = f(x)$ to the given differential		• 1• •
equation with the initial condition $f(0) = 0$.		
(2004 ABB5)		