

Lesson 💼

Main n

Back

Next >

Essential Question:

How do I determine if two figures are similar?

Standard:

MCC8.G.4: Understand that a twodimensional figure is simiar to another if the second can be obtained from the first by a sequesnce of rotaions, reflections, translations, and dilations; given two similar two-D figures, describe a sequence that exhibits the similarity between them.

Lesson 🔒

Main n

Next >

Back

Vocabulary

Next >

Back

Lesson 💼

Main n

similar

corresponding sides

corresponding angles

© HOLT McDOUGAL, All Rights Reserved

Similar figures have the same shape, but not necessarily the same size.

Corresponding sides of two figures are in the same relative position, and **corresponding angles** are in the same relative position. Two figures are similar if the lengths of corresponding sides are proportional and the corresponding angles have equal measures.

Next >

Back

Lesson 💼

Main n

SIMILAR POLYGONS		
Words	Diagram	Corresponding Parts
For two polygons to be similar, corresponding angles must have equal measures, and the ratios of the lengths of the corresponding sides must be proportional.	$\begin{array}{c} 53^{\circ} A \\ 60 \\ 36 \\ 37^{\circ} \\ 8 \\ 48 \\ 6 \\ 6 \\ 18 \\ 48 \\ C \\ G \\ 18 \\ E \\ C \\ G \\ 18 \\ E \end{array}$	$m\angle A = m\angle E$ $m\angle B = m\angle F$ $m\angle C = m\angle G$ $\frac{AB}{EF} = \frac{BC}{FG} = \frac{AC}{EG} = \frac{2}{1}$

Lesson 🔒

Next >

< Back

Main 🕇

Similar Figures

Additional Example 1: Identifying Similar Figures

Which rectangles are similar?

Since the three figures are all rectangles, all the angles are right angles. So the corresponding angles are congruent.

Lesson 💼

Main 💼

Next >

Back

Additional Example 1 Continued

Compare the ratios of corresponding sides to see if they are equal.

 $\frac{\text{length of rectangle }J}{\text{length of rectangle }K} \rightarrow \frac{10}{5} \stackrel{?}{=} \frac{4}{2} \leftarrow \frac{\text{width of rectangle }J}{\text{width of rectangle }K}$ 20 = 20

The ratios are equal. Rectangle J is similar to rectangle K. The notation $J \sim K$ shows similarity.

 $\frac{\text{length of rectangle }J}{\text{length of rectangle }L} \rightarrow \frac{10}{12} \stackrel{?}{=} \frac{4}{5} \leftarrow \frac{\text{width of rectangle }J}{\text{width of rectangle }L}$

 $50 \neq 48$ The ratios are not equal. Rectangle J is not similar to rectangle L. Therefore, rectangle K is not similar to rectangle L.

Next >

Back

Lesson 🔒

Main 🖬

© HOLT McDOUGAL, All Rights Reserved

Check It Out: Example 1

Which rectangles are similar?

Since the three figures are all rectangles, all the angles are right angles. So the corresponding angles are congruent.

Lesson 💼

Main n

Back

Next >

my.hrw.com/math14/ga/msm/student/osp/g8/data/unit01/mod01/lesson01/exploration_core_lesson.pdf - Google Chrome

my.hrw.com/math14/ga/msm/student/osp/g8/data/unit01/mod01/lesson01/exploration_core_lesson.pdf

You can also determine whether two triangles are similar by deciding whether the lengths of the corresponding sides are proportional.

3 EXAMPLE Using Proportional Side Lengths

Lesson 1

Additional Example 2: Finding Missing Measures in Similar Figures

A picture 10 in. tall and 14 in. wide is to be scaled to 1.5 in. tall to be displayed on a Web page. How wide should the picture be on the Web page for the two pictures to be similar?

Set up a proportion. Let *w* be the width of the picture on the Web page.

width of a picture $\longrightarrow \frac{14}{w} = \frac{10}{1.5}$ height of picture width on Web page $\longrightarrow w$ height on Web page

Next >

Back

Lesson 🔒

Main 💼

- $14 \cdot 1.5 = w \cdot 10$ Find the cross products.
 - 21 = 10w $\frac{21}{10} = \frac{10w}{10}$ Divide both sides by 10. 2.1 = w

The picture on the Web page should be 2.1 in. wide.

Check It Out: Example 3

A flag in the shape of an isosceles triangle with side lengths 18 ft, 18 ft, and 24 ft is hanging on a pole outside a campground. A camp t-shirt shows a smaller version of the triangle with two sides that are each 4 in. long. What is the length of the third side of the triangle on the t-shirt?

$$\frac{18 \text{ ft}}{4 \text{ in.}} = \frac{24 \text{ ft}}{x \text{ in.}}$$

$$Set up a proportion.$$

$$18 \bullet x = 24 \bullet 4$$
Find the cross products.

Back

Next >

Lesson 💼

Main n

Similar Figures

Check It Out: Example 3 Continued

$$18x = 96$$
Multiply. $x = \frac{96}{18} \approx 5.3$ Solve for x.

The third side of the triangle is about 5.3 in. long.

Lesson 🔒

Main 💼

Next >

< Back

my.hrw.com/math14/ga/msm/student/osp/g8/data/unit01/mod01/lesson01/exploration_core_lesson.pdf - Google Chrome

my.hrw.com/math14/ga/msm/student/osp/g8/data/unit01/mod01/lesson01/exploration_core_lesson.pdf

PRACTICE

1. Two transversals intersect two parallel lines as shown. Explain whether $\triangle ABC$ and $\triangle DEC$ are similar.

A В