Warm Up

Problem of the Day

Lesson Presentation

Warm Up

Determine if the given numbers are solutions to the given equations.

1.
$$x = 2$$
 for $4x = 9$

no

2.
$$x = 5$$
 for $8x + 2 = 42$

yes

3.
$$x = 4$$
 for $3(x - 2) = 10$

no

Problem of the Day

Four couples have dinner together. The wives are Ginny, Helen, Sarah, and Bridget. The husbands are Mark, Alex, Stephen, and Henry. Who is married to whom?

- Sarah is Mark's sister.
- Sarah introduced Henry to his wife.
- Bridget has 2 brothers, but her husband is an only child.
- Ginny is married to Stephen.

Ginny and Stephen, Helen and Mark, Sarah and Alex, Bridget and Henry

Learn to solve one-step equations by using addition or subtraction.

Vocabulary

Addition Property of Equality inverse operations Subtraction Property of Equality

To solve an equation means to find a solution to the equation. To do this, isolate the variable that is, get the variable alone on one side of the equal sign.

$$x = 8 - 5$$
 $x + 5 = 8$
7 - 3 = y $7 = 3 + y$

The variables are isolated. The variables are *not* isolated.

Recall that an equation is like a balanced scale. If you increase or decrease the weights by the same amount on both sides, the scale will remain balanced.

ADDITION PROPERTY OF EQUALITY

Words	Numbers	Algebra
You can add the same amount to both sides of an equation, and the statement will still be true.	2 + 3 = 5	$ \begin{aligned} x &= y \\ + z &= + z \\ x + z &= y + z \end{aligned} $

Use inverse operations when isolating a variable. Addition and subtraction are inverse operations, which means that they "undo" each other.

Additional Example 1: Solving an Equation by Addition

Solve the equation b - 7 = 24. Check your answer.

$$b - 7 = 24$$

 $+ 7$
 $= 31$

Think: 7 is **subtracted** from b, so add 7 to both sides to isolate b.

Check

$$b - 7 = 24$$

$$31 - 7 \stackrel{?}{=} 24$$

Substitute 31 for b.

 $24 \stackrel{?}{=} 24 \checkmark$ 31 is a solution.

Check It Out: Example 1

Solve the equation y - 3 = 21. Check your answer.

$$y - 3 = 21$$

$$+ 3 + 3$$

$$y = 24$$

Think: 3 is **subtracted** from y, so add 3 to both sides to isolate y.

Check

$$y - 3 = 21$$

24 - 3 = 21 Substitute 24 for y.
21 = 21 \(24 \) is a solution.

SUBTRACTION PROPERTY OF EQUALITY

Words

You can subtract the same amount from both sides of an equation, and the statement will still be true.

Numbers

4 + 7 = 114 + 4 = 8

Algebra

$$\begin{array}{rcl}
x & = & y \\
-z & = & -z \\
x - z & = & y - z
\end{array}$$

Additional Example 2: Solving an Equation by Subtraction

Solve the equation t + 14 = 29. Check your answer.

$$t + 14 = 29$$
 $- 14 - 14$
 $t = 15$

Think: 14 is **added** to t, so subtract 14 from both sides to isolate t.

Check

$$t + 14 = 29$$

Substitute 15 for t. 15 is a solution.

Check It Out: Example 2

Solve the equation x + 11 = 36. Check your answer.

$$x + 11 = 36$$
 $\frac{-11}{x} = 25$

Think: 11 is **added** to x, so subtract 11 from both sides to isolate x.

Check

$$x + 11 = 36$$
 $25 + 11 \stackrel{?}{=} 36$
 $36 \stackrel{?}{=} 36 \checkmark$
 $25 \text{ is a solution.}$

Additional Example 3: Sports Application

The Giants scored 13 points in a game against Dallas. They scored 7 points for a touchdown and the rest of their points for field goals. How many points did they score on field goals?

Let f represent the field goal points.

7 points + field goal points = points scored
7 +
$$f$$
 = 13
7 + f = 13
7 - 7 Subtract 7 from both sides to isolate f .
 $f = 6$

They scored 6 points on field goals.

Check It Out: Example 3

A basketball player scored 23 points during a game. Of those points, 3 were from 3-point goals and the remainder were 2 point goals. How many points did he score with 2 point goals?

Let x equal the points scored by 2 point goals.

3 point goals + 2 point goals = points scored
3 +
$$x = 23$$

3 + $x = 23$
3 - 3 Subtract 3 from both sides to
 $x = 20$ isolate x .

He scored 20 points from 2 point goals.

Lesson Quiz

Solve each equation. Check your answer.

1.
$$x - 9 = 4$$
 $x = 13$; $13 - 9 = 4$

2. $y + 6 = 72$ $y = 66$; $66 + 6 = 72$

3. $21 = n - 41$ $n = 62$; $21 = 62 - 41$

4. $127 = w + 31$ $w = 96$; $127 = 96 + 31$

6. Tamika has sold 16 dozen cookies this week. This was 7 dozen more than she sold last week. Write and solve an equation to find how many dozen cookies she sold last week.

$$x + 7 = 16$$
; 9 dozen

5. 81 = x - 102

x = 183; 81 = 183 - 102