
Practice Spring Final Exam Which is considered matter? (B) rain (C) an idea (D) a dream (A) energy Which is **NOT** part of the definition of matter? (A) Something that you can see with your eyes. (B) Something that has mass. (C) Something that has volume. (D) Something that takes up space. What piece of lab equipment would you use to accurately measure the volume of a liquid? (A) beaker (B) test tube (C) graduated cylinder (D) hot plate What is the density of a liquid sample if the volume is 25 mL and the mass is 20 grams? (A) 0.8 g/mL(B) 1.3 g/mL(C) 45 g/mL (D) 500 g/mL 5. In a solution of silver nitrate, water is the (A) solute (B) solvent (C) solution (D) element 6. The correct way to represent a solution of copper nitrate is (A) Cu (s) (B) Cu (aq) (C) $Cu(NO_3)_2$ (s) (D) $Cu(NO_3)_2$ (aq) Which elements would you expect to have similar properties? (A) C and Si (B) Cu and Zn (C) N and O (D) H and He The Group VIII elements are called (A) alkali metals (B) alkaline earth metals (C) noble gases (D) halogens Which of the following is a transition metal? (A) Na (B) Sn (C) Al (D) Fe 10. The least reactive group of elements on the periodic table is the (A) alkali metals (B) noble gases (C) halogens (D) transition metals 11. How many bonds should carbon form in a structural formula? (A) 1(B) 2 (C)3(D) 4 12. How many lone pairs are in a Lewis dot diagram of PH₃? (B) 2(D) 4 (A) 1(C)313. A chlorine atom forms bonds in order to get how many total valence electrons? (B) 4 (A) 2(C)6(D) 8 14. In a double bond, the atoms share (A) 1 electron (B) 2 electrons (C) 3 electrons (D) 4 electrons 15. The picture below is which type of representation of a molecule? H:N:H

(B) structural formula(D) ball-and-stick model

Н

(A) Lewis dot diagram

(C) molecular formula

or injury months in a product in 200 grains or injurocitions actu	
$Mg(s) + 2 HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$ How many liters of hydrogen, H_2 , do you produce if 200 grams of hydrochloric acid	HCl reacts?
59. Consider the following reaction: $Mg(s) + 2 HCl(2a) \rightarrow MgCl_{s}(2a) + H_{s}(a)$	
(A) 6 (B) 3 (C) 2	(D) 1
58. When the equation $Fe_2O_3 + H_2 \rightarrow Fe + H_2O$ is balanced, H_2 has a coefficient of	
(A) Na_2Fe (B) $S(NO_3)_2$ (C) $Na(NO_3)_2$	(D) FeS
$Na_2S + Fe(NO_3)_2 \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$	
57. Which of the following is one of the correct products of this chemical reaction?	
(A) the subscripts (B) the chemical formulas (C) the reactants and the products	(D) the coefficients
56. In order to balance a chemical equation, you can change	. /
(A) 5 moles (B) 10 moles (C) 15 moles	(D) 20 moles
S3. According to this baranced equation, now many moles of Cu are required to produce $\text{Cu} + 2 \text{ AgNO}_3 \rightarrow 2 \text{ Ag} + \text{Cu}(\text{NO}_3)_2$	Jo moies of Ag:
(A) 8.6L (B) 10.3 L (C) 2.2 L (D) 1.4 L 55. According to this balanced equation, how many moles of Cu are required to produce	30 moles of Ag?
54. How many liters of water need to be added to 2.8 moles of nitric acid to prepare a 2.4	U M solution?
(A) 3 mol (B) 1 mol (C) 4 mol (D) 8 mol	O.M. 1 42 O
53. How many moles of salt are in a 0.50 liter 2.0 M solution?	
(A) 2.5 M (B) 1 M (C) 7.2 M (D) 3 M	
52. If 55g of NaOH was dissolved in 550 mL of water, what is the molarity?	
(A) 4.17 moles (B) 2.94 moles (C) 0.24 moles (D) 172 moles	
NaCl?	
51. How many moles of 0.84 M sodium chloride solution would you need to have if you	want to have 3.5 liters of
71.11	
(A) 4.7 (B)7 (C) 9.3 (D) 14	
50. What is the pOH of peaches if the pH is 4.7?	
(A) Li ₂ Pb (B) Pb (C) Li (NO ₃) ₂ (D) PbLi	
49. Which of the following is one of the correct products of the chemical reaction $\text{Li} + \text{Pb}(\text{NO}_3)_2 \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}} ?$	
(A) 9.8 (B) 4.2 (C) 3.6 (D) -9.8 49 Which of the following is one of the correct products of the chemical reaction	
48. What is the pH of sour pickles if $[OH^{-}] = 1.6 \times 10^{-10} M$?	
(A) single displacement (B) double displacement (C) combination (D) decomposition	
47. What type of reaction is this: $AgNO_3$ (aq) + Cu (s) \rightarrow Ag (s) + Cu(NO_3) ₂ (aq)?	
(A) 6 (B) 3 (C) 2 (D) 1	
46. When the equation $Fe_2O_3 + H_2 \rightarrow Fe + H_2O$ is balanced, Fe has a coefficient of	
(A) 1.5 moles (B) 0.375 moles (C) 0.67 moles (D) $3.75x10^4$ moles	
(A) CaAl (B) Cl ₃ (NO ₃) ₂ (C) AlCl ₂ (D) AlCl ₃ 45. How many moles of sodium nitrate are in 0.75 liters of a 0.5 M NaNO ₃ solution?	
$CaCl_2 + Al(NO_3)_3 \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$	
44. Which of the following is one of the correct products of this chemical reaction?	
(A) 18 M (B) 2 M (C) 0.5 M (D) 3 M	
43. If you have 3 moles of glucose in 6 liters of solution, what is the molarity of the solu	tion?
(A) Al_2OH (B) $Al_2(OH)_3$ (C) $Al(OH)_2$ (D) $Al(OH)_3$	
42. The correct chemical formula for aluminum hydroxide is	
41. To dilute an acid, you would use (A) an acid (B) a base (C) an indicator (D) water	
(A) an acid (B) a base (C) neutral (D) an indicator	
40. If a solution has a pH of 5, it is	
(C) The O_2 balloon has more molecules. (D) Oxygen gas is more dense than	hydrogen gas.
(A) Both have the same volume. (B) Both have the same number of	
the balloon with O ₂ gas falls to the ground. Which of the following is NOT true?	_
39. You have $3 L$ of H_2 gas in a balloon and $3 L$ of O_2 gas in another balloon. The balloon	on with H ₂ gas floats, while
(A) 1 mol (B) 1.3 mol (C) 3.1 mol (D) 6.3 mol	
38. How many moles are in 100 g of O ₂ gas?	
37. The mass of one mole of $Ca(OH)_2$ is: (A) 29 g (B) 38 g (C) 57 g (D) 74 g	
(A) $4227 L$ (B) $2.1 \times 10^6 mL$ (C) $1.53 \times 10^{51} L$ (D) 2.1×10^6	L
36. How much space do 5.7×10^{20} molecules of oxygen gas occupy?	т
(A) 25°C, 760 mm Hg (B) 0°C, 101.3 kPa (C) 0 K, 1 atm (D) 0 36. How much space do 5.7x10 ²⁸ molecules of oxygen gas occupy?	K, 760 atm
35. Which of the following represents STP?	

	Consider the following reaction $Mg(s) + 2 HCl$	n: $l(aq) \rightarrow MgCl_2(aq)$	+ H ₂ (g)		
	How many atoms of magnesium	m, Mg, do you need	to produce 190 grams	of magnesium chloride, MgCl ₂ ? (D) 6.0 x 10 ²⁴	
61.	Balance the following equation:	Na (s) + $O_2(g) \rightarrow N$	Na ₂ O. What coefficient		
62.	Balance the following equation	: Fe (s) + $O_2(g) \rightarrow$	$Fe_2O_3(s)$. What coef	ficient will be in front of O ₂ ?	
63	(A) 1 How many grams of MgO will y	(B) 2 (C) 3 (D			
03.	$2Mg + O_2$	→ 2MgO	•	(D)101	
64	(A) 200 According to this balanced equa	(B) 50	(C) 440	(D)101 produce 10 males of AgNO ₂ ?	
04.	According to this balanced equa		\Rightarrow 2 Ag + Cu(NO ₃) ₂	produce to moles of Agrico3:	
	(A) 5 moles	(B) 10 moles	(C) 15 moles	(D) 20 moles	
65.	When the equation $Fe_2O_3 + H_2$	\rightarrow Fe + H ₂ O is balan	ced, Fe has a coefficie		
	* *	(B) 3	(C) 2	(D) 1	
66.		$Fe_2O_3 \rightarrow 2 Fe + 3 N$	ИgO	_	
	(A) 0.686 moles	(B) 3 moles	(C) 1.5 moles	(D) 6 moles	
67.		$G_2(s) + 2H_2O(1) = \frac{1}{2}$	\rightarrow C ₂ H ₂ (g) + Ca(OI		
	If 3.2 moles of CaC_2 are consum				
60	(A) 12.8g	(B) 6.4 g	(C) 115.2 g	(D) 60 g	
	Acetylene gas, C ₂ H ₂ , is used in ording to the following reaction.		extremely not flame v	when it burns in pure oxygen	
acc	ording to the following reaction.		\rightarrow 4CO ₂ (g) + 2H ₂ O(g)	
	How many mole		ed when 250.0 g of C_2 l		
	(A) 19.23 moles	(B) 9.6 moles	(C) 38.46 moles		
69.	Laughing gas (nitrous oxide, N ₂	O) is sometimes used	d as an anesthetic in de	ntistry. It is produced when	
amı	monium nitrate is decomposed a				
			$N_2O(g) + 2H_2O(l)$		
	How many grams of NH ₄ N			(D) 2.04	
70	(A) 1.47 g	(B) 117.9 g	(C) 33.0 g	(D) 2.94 g	
	For an exothermic process,				
	For an exothermic process, (A) Temperature decreases	the solution to the en	vironment		
	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from t	the solution to the en	vironment		
	For an exothermic process, (A) Temperature decreases				
	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from t (C) The solution feels cold	the environment to the			
71.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from t (C) The solution feels cold (D) Energy is transferred from the solution feels cold (D) Energy is transferred from the solution feels cold (A) Transferring 500 calories to	the environment to the test? 200 g of water starti	ne solution		
71.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from t (C) The solution feels cold (D) Energy is transferred from Which cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to	the environment to the test? 200 g of water starti 400 g of water starti	ne solution ng at 30°C ng at 30°C		
71.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from t (C) The solution feels cold (D) Energy is transferred from t Which cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to (C) Transferring 200 calories to	the environment to the test? 200 g of water starti 400 g of water starti 100 g of water starti	ng at 30°C ng at 30°C ng at 30°C		
71.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from t (C) The solution feels cold (D) Energy is transferred from Which cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to (C) Transferring 200 calories to (D) Transferring 100 calories to	the environment to the test? 200 g of water starti 400 g of water starti 100 g of water starti	ng at 30°C ng at 30°C ng at 30°C		
71. 72.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from t (C) The solution feels cold (D) Energy is transferred from the cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to (C) Transferring 200 calories to (D) Transferring 100 calories to Which requires more energy?	the environment to the test? 200 g of water starti 400 g of water starti 100 g of water starti 50 g of water startin	ng at 30°C ng at 30°C ng at 30°C ng at 30°C g at 30°C	r from 10°C to 20°C	
71. 72.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from t (C) The solution feels cold (D) Energy is transferred from t Which cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to (C) Transferring 200 calories to (D) Transferring 100 calories to Which requires more energy? (A) Heating 100 g of water from	the environment to the test? 200 g of water starti 400 g of water starti 100 g of water starti 50 g of water startin 10°C to 30°C (B	ne solution ng at 30°C ng at 30°C ng at 30°C g at 30°C) Heating 50 g of wate		
71. 72.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from t (C) The solution feels cold (D) Energy is transferred from t Which cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to (C) Transferring 200 calories to (D) Transferring 100 calories to Which requires more energy? (A) Heating 100 g of water from (C) Heating 10 g of water from	the environment to the test? 200 g of water starting the	ne solution ng at 30°C ng at 30°C ng at 30°C g at 30°C) Heating 50 g of water) Heating 400 g of water		
71. 72.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from t (C) The solution feels cold (D) Energy is transferred from t Which cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to (C) Transferring 200 calories to (D) Transferring 100 calories to Which requires more energy? (A) Heating 100 g of water from	the environment to the test? 200 g of water starti 400 g of water starti 100 g of water starti 50 g of water startin 10°C to 30°C (B 20°C to 60°C (D likely to extinguish	ne solution ng at 30°C ng at 30°C ng at 30°C g at 30°C) Heating 50 g of water) Heating 400 g of water		
71. 72. 73.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from the control of the solution feels cold (D) Energy is transferred from the which cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to (C) Transferring 200 calories to (D) Transferring 100 calories to (D) Transferring 100 calories to (C) Heating 100 g of water from (C) Heating 10 g of water from (C) Housing the fire with sand (C) Blowing oxygen gas on the	the environment to the test? 200 g of water starting 400 g of water starting 100 g of water starting 50 g of water starting 10°C to 30°C (Bright 20°C to 60°C) Solition (B) Putting fire (D) Blowing 100°C to 100°C (D)	ne solution ng at 30°C ng at 30°C ng at 30°C g at 30°C) Heating 50 g of wate) Heating 400 g of wata a fire?	ter from 20°C to 30°C	
71. 72. 73.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from to (C) The solution feels cold (D) Energy is transferred from the which cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to (C) Transferring 200 calories to (D) Transferring 100 calories to Which requires more energy? (A) Heating 100 g of water from (C) Heating 10 g of water from Which of the following is NOT (A) Covering the fire with sand (C) Blowing oxygen gas on the Which of the following will NO	the environment to the test? 200 g of water starting the	ng at 30°C ng at 30°C ng at 30°C g at 30°C g at 30°C) Heating 50 g of wate) Heating 400 g of wate a fire? water on the fire g carbon dioxide gas of	ter from 20°C to 30°C	
71. 72. 73.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from the C) The solution feels cold (D) Energy is transferred from the Which cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to (C) Transferring 200 calories to (C) Transferring 100 calories to (D) Transferring 100 calories to Which requires more energy? (A) Heating 100 g of water from (C) Heating 10 g of water from (C) Heating 10 g of water from (C) Hoovering the following is NOT (A) Covering the fire with sand (C) Blowing oxygen gas on the Which of the following will NO (A) CH ₄ (B) 6	the environment to the test? 200 g of water starting the	ne solution ng at 30°C ng at 30°C ng at 30°C g at 30°C) Heating 50 g of wate) Heating 400 g of wata a fire? water on the fire	ter from 20°C to 30°C	
71. 72. 73.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from t (C) The solution feels cold (D) Energy is transferred from t Which cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to (C) Transferring 200 calories to (D) Transferring 100 calories to Which requires more energy? (A) Heating 100 g of water from (C) Heating 10 g of water from Which of the following is NOT (A) Covering the fire with sand (C) Blowing oxygen gas on the Which of the following will NO (A) CH ₄ (B) 0 Which of the following will con	the environment to the test? 200 g of water starting the	ne solution ng at 30°C ng at 30°C ng at 30°C g at 30°C) Heating 50 g of wate) Heating 400 g of wat a fire? water on the fire g carbon dioxide gas of	er from 20°C to 30°C on the fire (D) CaCl ₂	
71. 72. 73.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from the color of the solution feels cold (D) Energy is transferred from the color of the solution feels cold (D) Energy is transferred from the color of the color of water gets the hote of the color of the c	the environment to the test? 200 g of water starting the	ng at 30°C ng at 30°C ng at 30°C g at 30°C g at 30°C) Heating 50 g of wate) Heating 400 g of wate a fire? water on the fire g carbon dioxide gas of	er from 20°C to 30°C on the fire (D) CaCl ₂	
71. 72. 73. 74.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from the control of the solution feels cold (D) Energy is transferred from the control of the solution feels cold (D) Energy is transferred from the control of the solution feels cold (D) Energy is transferred from the control of the cold of the	the environment to the test? 200 g of water starting the starting of the star	ne solution ng at 30°C ng at 30°C ng at 30°C g at 30°C) Heating 50 g of wate) Heating 400 g of wat a fire? water on the fire g carbon dioxide gas of (C) Mg that don't contain too	ter from 20°C to 30°C on the fire (D) CaCl ₂ much oxygen	
71. 72. 73. 74.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from the control of the solution feels cold (D) Energy is transferred from the solution feels cold (D) Energy is transferred from the solution feels cold (D) Energy is transferred from the solution feels cold (E) Transferring 500 calories to (E) Transferring 200 calories to (E) Transferring 100 calories to (E) Heating 10 g of water from the solution from the following is NOT (E) Heating 10 g of water from the	the environment to the test? 200 g of water starting the starting of the star	ne solution ng at 30°C ng at 30°C ng at 30°C g at 30°C) Heating 50 g of wate) Heating 400 g of wat a fire? water on the fire g carbon dioxide gas of (C) Mg that don't contain too	ter from 20°C to 30°C on the fire (D) CaCl ₂ much oxygen	
71. 72. 73. 74.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from the composition of the solution feels cold (D) Energy is transferred from the which cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to (C) Transferring 200 calories to (D) Transferring 100 calories to (D) Transferring 100 calories to (E) Transferring 100 gof water from (C) Heating 100 gof water from (C) Heating 100 gof water from (E) He	the environment to the test? 200 g of water starting 400 g of water starting 100 g of water starting 100°C to 30°C (Branch 20°C to 60°C (Dranch 100°C) likely to extinguish (Branch 100°C) Blowing 100°C (Dranch 100°C) Bl	ng at 30°C ng at 30°C ng at 30°C ng at 30°C g at 30°C) Heating 50 g of wate) Heating 400 g of wate a fire? water on the fire g carbon dioxide gas of (C) Mg that don't contain too cetate, NH ₄ C ₂ H ₄ O ₂ , in	ter from 20°C to 30°C on the fire (D) CaCl ₂ much oxygen the water and find that the	
71. 72. 73. 74.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from the composition of the solution feels cold (D) Energy is transferred from the composition of the solution feels cold (D) Energy is transferred from the composition of the solution feels cold (C) Transferring 500 calories to (C) Transferring 200 calories to (C) Transferring 100 calories to (D) Transferring 100 calories to (C) Heating 100 g of water from the composition of the following is NOT (A) Covering the fire with sand (C) Blowing oxygen gas on the composition of the following will NO (A) CH ₄ (B) Characteristic of the following will con (A) Water (C) Ionic salts (D) Characteristic of the composition of the following will con (A) Water (B) Characteristic of the following will con (A) Water (C) Ionic salts (D) Characteristic of the following will con (A) Water (B) Characteristic of the following will con (A) Water (C) Ionic salts (D) Characteristic of the following will con (A) Water (B) Characteristic of the following will con (A) Water (B) Characteristic of the following will con (A) Water (B) Characteristic of the following will con (A) Water (B) Characteristic of the following will con (A) Water (B) Characteristic of the following will con (C) Ionic salts (D) Characteristic of the following will con (A) Water (C) Ionic salts (D) Characteristic of the following will con (A) Water (C) Ionic salts (D) Characteristic of the following will con (D) Characteristic of the following will	the environment to the test? 200 g of water starting the	ng at 30°C ng at 30°C ng at 30°C ng at 30°C g at 30°C) Heating 50 g of wate) Heating 400 g of wate a fire? water on the fire g carbon dioxide gas of (C) Mg that don't contain too cetate, NH ₄ C ₂ H ₄ O ₂ , in	ter from 20°C to 30°C on the fire (D) CaCl ₂ much oxygen the water and find that the	
71. 72. 73. 74. 75.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from the C) The solution feels cold (D) Energy is transferred from Which cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to (C) Transferring 200 calories to (D) Transferring 100 calories to (D) Transferring 100 calories to (C) Heating 100 g of water from (C) Heating 10 g of water from (C) Heating 10 g of water from Which of the following is NOT (A) Covering the fire with sand (C) Blowing oxygen gas on the Which of the following will NO (A) CH ₄ (B) (C) Heating 10 g of water from Sunch the following will con (A) Ch ₄ (B) (C) Heating 10 g of water from Sunch the following will con (A) Ch ₄ (C) In the following will con (A) Water (C) Ionic salts (D) (C) Ionic salts (C) Ionic salts (D) (C) Ionic salts (E) (C) Ionic salts (C) Exothermic process (C) Exothermic process (E) You are camping and need to be	the environment to the test? 200 g of water starting the	ng at 30°C ng at 30°C ng at 30°C ng at 30°C g at 30°C) Heating 50 g of wate) Heating 400 g of wate a fire? water on the fire g carbon dioxide gas of (C) Mg that don't contain too cetate, NH ₄ C ₂ H ₄ O ₂ , in red from the solution toocess	ter from 20°C to 30°C on the fire (D) CaCl ₂ much oxygen the water and find that the	
71. 72. 73. 74. 75. 76.	For an exothermic process, (A) Temperature decreases (B) Energy is transferred from the composition of the solution feels cold (D) Energy is transferred from the which cup of water gets the hot (A) Transferring 500 calories to (B) Transferring 700 calories to (C) Transferring 200 calories to (D) Transferring 100 calories to (D) Transferring 100 calories to (E) Transferring 100 gof water from (C) Heating 100 g of water from (C) Heating 10 g of water from (E)	the environment to the test? 200 g of water startine 400 g of water startine 100 g of water startine 100 g of water startine 10°C to 30°C (Below 10°C to 60°C) This likely to extinguish (Below 10°C) This	ng at 30°C ng at 30°C ng at 30°C ng at 30°C g at 30°C) Heating 50 g of wate) Heating 400 g of wate a fire? water on the fire g carbon dioxide gas of (C) Mg that don't contain too cetate, NH ₄ C ₂ H ₄ O ₂ , in red from the solution toocess	the fire (D) CaCl ₂ much oxygen the water and find that the othe environment	

- 78. Which is a condition of an acid solution?
 - (a.) It feels soapy.
 - (b.) It is held together by ionic bonds.
 - (c.) It tastes sour.
 - (d.) It will neutralize a buffer.
- 79. Which of the following is one of the correct products of this chemical reaction?

For #80-84:

Fill in the proper responses that would describe the changes that would occur due to Le Chatelier's Principle. Choose from the following responses: Left(A), Right(B), Increase(C), Decrease(D), Remains the Same(E).

The following reaction takes place in a sealed container. As the reaction progresses the beaker is then heated with a hotplate.

$$4NH_3(g) + 5O_2(g) \Leftrightarrow 4NO(g) + 6H_2O(g) + 905 kJ$$

Table FA - 1 Reaction will Concentration of		Le Chatelier's Principle		
		Concentration of	Pressure inside	Temperature
Shift	Reactants	Products	Beaker	inside Beaker
80.	81.	82.	83.	84.

- 85. The important factor in determining the stability of a nucleus is
 - (A) The proton to electron ratio
 - (B) The electron to neutron ratio
 - (C) The neutron to proton ratio
 - (D) The valence electron to core electron ratio
- 86. Complete the following nuclear reaction:

$$^{222}_{86} Rn \rightarrow ^{4}_{2} He + \underline{\hspace{2cm}}$$
 a. $^{218}_{84} Rn$ b. $^{226}_{88} Rn$ c. $^{218}_{84} Po$ d. $^{226}_{88} Ra$

- 87. What type of decay happens in order for calcium-47 to change into scandium-47?
- (A) alpha decay (B) beta decay (C) gamma rays (D) a chemical reaction

Answers:

1)B 2)A 3)C 4)A 5)B 6)D 7)A 8)C 9)D 10)B 11)D 12)A 13)D 14)D 15)A 16)C 17)C 18)D 19)C 20)D 21B 22)D 23)A 24)A 25)D 26)B 27)A 28)D 29)C 30)B 31)A 32)A 33)A 34)D 35)B 36)D 37)D 38)C 39)C 40)A 41)D 42)D 43)C 44)D 45)B 46)C 47)A 48)B 49)B 50)C 51)B 52)A 53)B 54)D 55)C 56)D 57)D 58)B 59)C 60)A 61)B 62)C 63)A 64)A 65)C 66)A 67)C 68)A 69)B 70)B 71)A 72)D 73)C 74)D 75)B 76)D 77)A 78)C 79)B 80)A 81)C 82)D 83)D 84)C 85)C 86)C 87)B