1. What are the zeros of the quadratic function $f(x) = 12x^2 + 9x + 15$?

 $\frac{-3 \pm i\sqrt{71}}{8}$

2. Divide:

$$\frac{2+i}{5+6i}$$

$$\frac{16}{61} - \frac{7}{61}i$$

3. Find the product of (6 - 8i) and its complex conjugate

<mark>100</mark>

4. Stefanie is in a freestyle aerial competition. The equation $h = -16t^2 + 30t + 10$ models Stefanie's height *h*, in feet, *t* seconds after leaving the ramp.

(a) How long is Stefanie in the air? About 2.2 seconds

(b) what is Stefanie's maximum height? About 24 feet

5. Simplify the expression.

$$8h(h+2) - 3(h-7)$$

 $8h^2 + 13h + 21$

6. Factor the quadratic function $f(x) = 4x^2 + 17x + 15$ to determine the zeros of the function.

$$x = -\frac{5}{4}, x = -3$$

7. Let $f(x) = -x^2 - 4x - 1$. Which statement is true regarding the function f(x)? (*hint: re-write in vertex form*)

- A. Since $f(x) = -(x + 2)^2 + 3$, the function has a minimum value of 3
- B. Since $f(x) = -(x + 2)^2 + 3$, the function has a maximum value of 3
- C. Since $f(x) = -(x + 2)^2 3$, the function has a minimum value of -3
- D. Since $f(x) = -(x + 2)^2 3$, the function has a maximum value of -3

8. Which of the following polynomials is equivalent to $(3a + 7b)^2$?

A. $9a^2 + 49b^2$ B. $9a^2 + 42ab + 49b^2$ C. $6a^2 + 20ab + 14b^2$ D. $100ab^2$

9. Which of the following is the classification and description of the polynomial $-7x + 9x^2 - 2$.

- A. The leading coefficient is -7; it is a linear trinomial
- B. The leading coefficient is -7; it is a quadratic trinomial
- C. The leading coefficient is 9; it is a quadratic trinomial
- D. The leading coefficient is 9; it is a quadratic binomial

10. Solve for x.

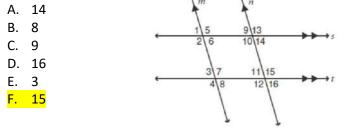
 $-x^2 + 2x + 24 = 0$

x = 6 and -4

- 11. Which of the following equations has 2 real roots?
 - A. $3x^2 + 8x + 2 = 0$
 - B. $-16x^2 + 8x 1 = 0$ C. $5x^2 + 2x + 4 = 0$

 - D. $12x^2 + 9x + 15 = 0$

12. Solve $4x^2 - 9 = -7x - 4$ using the quadratic formula

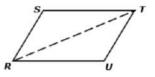

13. Find the solutions for $x^2 + 6x - 1 = 0$ by completing the square.

 $x = -3 + \sqrt{10}$

14. Describe the shift in the parabola of $y = (x - 4)^2 + 4$ to the parabola of $y = (x - 6)^2 + 2$. (Hint: draw a sketch to help you see the difference)

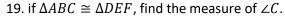
2 units down and 2 units to the right

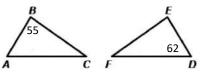
15. Which of the angles would **NOT** be congruent to Angle 6 assuming it is not a right angle?



16. In the isosceles triangle shown, $\angle Q$ and $\angle N$ are congruent, and the measure of the exterior angle $\angle HMN$ is 100°. What is the measurement of $\angle N$?

17. Quadrilateral RSTU is shown below with diagonal \overline{RT} .

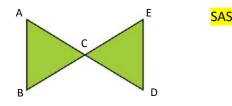

Kera knows that the opposite sides of the guadrilateral are congruent. She also claims that the quadrilateral is a


parallelogram. She writes the two-column proof below to justify his claim. Fill in the missing pieces in the proof

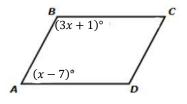
	Statement	Reason
1	$\overline{RS} \cong \overline{TU}; \ \overline{ST} \cong \overline{UR}$	Given
2	$\overline{RT} \cong \overline{RT}$	Reflexive Property
3	<mark>ΔSTR ≅ ΔURT</mark>	<mark>SSS</mark>
4	∠STR ≅ ∠URT	<mark>СРСТС</mark>
	$\angle SRT \cong \angle UTR$	
5	<mark>RS</mark> ∥ <u>TU</u>	Converse of the alternate
	<mark>ST</mark> ∥ <u>UR</u>	interior angle theorem
6	RSTU is a parallelogram	Opposite sides of a
		parallelogram are parallel

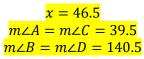
18. In rectangle *ABCD*, diagonals \overline{AC} and \overline{BD} are drawn to intersect and point *E*. Which of the following statements *must* be true?

- A. $\triangle AEB \cong \triangle AED$
- B. $\Delta AEB \cong \Delta CEB$
- C. ΔAEB must be a right triangle
- D. $\triangle AEB \cong \triangle CED$


<mark>63</mark>

20. A quadrilateral is drawn on a coordinate plane with vertices K(2,3), L(8,4), M(7,-2) and N(1,-3).

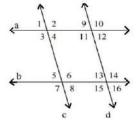

Andrea wants to prove that the quadrilateral is a parallelogram. Which of the following actions could she take? Select *all* that apply.


- A. Use the slope formula to see if both pairs of opposite sides have the same slope
- B. Use the distance formula to see if the diagonals are congruent
- C. Use the midpoint formula to see if the diagonals bisect each other
- D. Use the distance formula to see if both pairs of opposite sides have the same measure
- E. Use the distance formula to see if there is exactly one pair of congruent consecutive sides
- F. Use the slope formula to see if the sides are perpendicular

21. Which theorem(s) or postulate(s) can be used to prove $\Delta ACB \cong \Delta ECD$ Given \overline{AD} and \overline{BE} bisect each other?

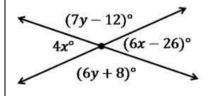
22. Examine the parallelogram *ABCD* below. Find $x, m \angle A, m \angle B, m \angle C$ and $m \angle D$

23. Triangles $\triangle MNP$ and $\triangle OMN$ are congruent equilateral triangles, $m \angle O = 5y + 10$, $MP = \frac{1}{5}x$ and ON = 3x - 2. Find x and y.



$$x = \frac{5}{7}, y = 10$$

24. Which of the following represents the symmetric property?


- A. HG = HG
- B. If a = b, b = c, then a = c
- C. If a + b = c, then c = a + b
- D. If AB = DE and AB + BC = AC, then DE + BC = AC

25. Given that line a and line b are parallel, which pair of angles must be congruent and why?

- A. Angle 10 and angle 11, by the Same Side Interior Angle Theorem (Consecutive Interior Angle Theorem)
- B. Angle 4 and Angle 11, by the Alternate Interior angle Theorem
- C. Angle 1 and Angle 8, by the Alternate Exterior Angle Theorem
- D. Angle 6 and Angle 16, by the Alternate Corresponding Angle Theorem

26. Find the values of x and y.

x = 13, y = 20

27. How many times will the graph of $y = (x - 5)^2 + 3$ intersect the x-axis?

<mark>0 times</mark>

28. Find the axis of symmetry and the vertex of the graph of $g(x) = 4x^2 - 8x + 2$	32. Factor the expression completely $48x^2 - 75$
Axis of Symmetry: $x = 1$ Vertex: $(1, -2)$	3(4x-5)(4x+5)
29. Find the y- intercept of the graph $y = 10x^2 - 4x + 3$	33. Factor each polynomial. Write prime if it's not factorable. A. $x^2 - 8x - 20 (x + 2)(x - 10)$ B. $x^2 - 4x + 24$ prime C. $15x^2 + 21x + 6 3(5x + 2)(x + 1)$ D. $5x^3 + 10x^2 - 7x - 14 (5x^2 - 7)(x + 2)$
30. Perform the operation: $(6x^4 + 3x^3 - 5x^2 + x + 2) - (5x^3 + 8x^2 - 9)$	
$\frac{6x^4 - 2x^3 - 13x^2 + x + 11}{2}$	34. Factor the trinomial $7x^2 + 19x - 6$ (7x - 2)(x + 3)
31. Simplify $(-6x - y)(9x + 3y)$	
$-54x^2 - 27xy - 3y^2$	35. What is the value of z in the equation $0 = 32 + 98z^2$? $\pm \frac{4}{7}i$