- 1. If $y = \sin^3 x$, then $\frac{dy}{dx} =$ (A) $\cos^3 x$ (B) $3\cos^2 x$ (C) $3\sin^2 x$ (D) $-3\sin^2 x \cos x$ (E) $3\sin^2 x \cos x$
- 2. The position of a particle moving in the xy-plane is given by the parametric equations $x(t) = t^3 3t^2$ and $y(t) = 12t 3t^2$. At which of the following points (x, y) is the particle at rest?
 - (A) (-4, 12) (B) (-3, 6) (C) (-2, 9) (D) (0, 0) (E) (3, 4)

Graph of f

- 3. The graph of f is shown above for $0 \le x \le 4$. What is the value of $\int_0^4 f(x) dx$? (A) -1 (B) 0 (C) 2 (D) 6 (E) 12
- 4. Which of the following integrals gives the length of the curve $y = \ln x$ from x = 1 to x = 2?
 - (A) $\int_{1}^{2} \sqrt{1 + \frac{1}{x^{2}}} dx$ (B) $\int_{1}^{2} \left(1 + \frac{1}{x^{2}}\right) dx$ (C) $\int_{1}^{2} \sqrt{1 + e^{2x}} dx$ (D) $\int_{1}^{2} \sqrt{1 + (\ln x)^{2}} dx$ (E) $\int_{1}^{2} \left(1 + (\ln x)^{2}\right) dx$

- 5. The Maclaurin series for the function f is given by $f(x) = \sum_{n=0}^{\infty} \left(-\frac{x}{4}\right)^n$. What is the value of f(3)?
 - (A) -3 (B) $-\frac{3}{7}$ (C) $\frac{4}{7}$ (D) $\frac{13}{16}$ (E) 4
- 6. Using the substitution $u = x^2 3$, $\int_{-1}^{4} x (x^2 3)^5 dx$ is equal to which of the following?
 - (A) $2\int_{-2}^{13} u^5 du$ (B) $\int_{-2}^{13} u^5 du$ (C) $\frac{1}{2}\int_{-2}^{13} u^5 du$ (D) $\int_{-1}^{4} u^5 du$ (E) $\frac{1}{2}\int_{-1}^{4} u^5 du$
- 7. If $\arcsin x = \ln y$, then $\frac{dy}{dx} =$
 - (A) $\frac{y}{\sqrt{1-x^2}}$ (B) $\frac{xy}{\sqrt{1-x^2}}$
 - (C) $\frac{y}{1+x^2}$

(D)
$$e^{\arcsin x}$$

(E)
$$\frac{e^{\arcsin x}}{1+x^2}$$

t (hours)	4	7	12	15
R(t) (liters/hour)	6.5	6.2	5.9	5.6

8. A tank contains 50 liters of oil at time t = 4 hours. Oil is being pumped into the tank at a rate R(t), where R(t) is measured in liters per hour, and t is measured in hours. Selected values of R(t) are given in the table above. Using a right Riemann sum with three subintervals and data from the table, what is the approximation of the number of liters of oil that are in the tank at time t = 15 hours?

(A) 64.9 (B) 68.2 (C) 114.9 (D) 116.6 (E) 118.2

9. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{8^n}{n!}$$
 II. $\sum_{n=1}^{\infty} \frac{n!}{n!00}$ III. $\sum_{n=1}^{\infty} \frac{n+1}{(n)(n+2)(n+3)}$

(A) I only (B) II only (C) III only (D) I and III only (E) I, II, and III

10.
$$\int_{1}^{4} t^{-3/2} dt =$$

(A) -1 (B) $-\frac{7}{8}$ (C) $-\frac{1}{2}$ (D) $\frac{1}{2}$ (E) 1

- 11. Let f be the function defined by $f(x) = \sqrt{|x-2|}$ for all x. Which of the following statements is true?
 - (A) f is continuous but not differentiable at x = 2.
 - (B) f is differentiable at x = 2.
 - (C) f is not continuous at x = 2.
 - (D) $\lim_{x\to 2} f(x) \neq 0$
 - (E) x = 2 is a vertical asymptote of the graph of f.
- 12. The points (-1, -1) and (1, -5) are on the graph of a function y = f(x) that satisfies the differential equation $\frac{dy}{dx} = x^2 + y$. Which of the following must be true?
 - (A) (1, -5) is a local maximum of f.
 - (B) (1, -5) is a point of inflection of the graph of f.
 - (C) (-1, -1) is a local maximum of f.
 - (D) (-1, -1) is a local minimum of f.
 - (E) (-1, -1) is a point of inflection of the graph of f.

13. What is the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{(x-4)^{2n}}{3^n}$? (A) $2\sqrt{3}$ (B) 3 (C) $\sqrt{3}$ (D) $\frac{\sqrt{3}}{2}$ (E) 0 14. Let k be a positive constant. Which of the following is a logistic differential equation?

(A)
$$\frac{dy}{dt} = kt$$

(B) $\frac{dy}{dt} = ky$
(C) $\frac{dy}{dt} = kt(1-t)$
(D) $\frac{dy}{dt} = ky(1-t)$

(E)
$$\frac{dy}{dt} = ky(1-y)$$

15. The graph of a differentiable function f is shown above. If $h(x) = \int_0^x f(t) dt$, which of the following is true?

- (A) h(6) < h'(6) < h''(6)
- (B) h(6) < h''(6) < h'(6)
- (C) h'(6) < h(6) < h''(6)
- (D) h''(6) < h(6) < h'(6)
- (E) h''(6) < h'(6) < h(6)
- 16. Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = x y$ with initial condition f(1) = 3. What is the approximation for f(2) obtained by using Euler's method with two steps of equal length starting at x = 1?
 - (A) $-\frac{5}{4}$ (B) 1 (C) $\frac{7}{4}$ (D) 2 (E) $\frac{21}{4}$
- 17. For x > 0, the power series $1 \frac{x^2}{3!} + \frac{x^4}{5!} \frac{x^6}{7!} + \dots + (-1)^n \frac{x^{2n}}{(2n+1)!} + \dots$ converges to which of the following?
 - (A) $\cos x$ (B) $\sin x$ (C) $\frac{\sin x}{x}$ (D) $e^x e^{x^2}$ (E) $1 + e^x e^{x^2}$

Graph of f'

- 18. The graph of f', the derivative of a function f, consists of two line segments and a semicircle, as shown in the figure above. If f(2) = 1, then f(-5) =
 - (A) $2\pi 2$
 - (B) $2\pi 3$
 - (C) $2\pi 5$
 - (D) $6 2\pi$
 - (E) $4 2\pi$
- 19. The function f is defined by $f(x) = \frac{x}{x+2}$. What points (x, y) on the graph of f have the property that the line tangent to f at (x, y) has slope $\frac{1}{2}$?
 - (A) (0,0) only
 - (B) $\left(\frac{1}{2}, \frac{1}{5}\right)$ only
 - (C) (0,0) and (-4,2)

(D) (0,0) and
$$\left(4,\frac{2}{3}\right)$$

(E) There are no such points.

20.
$$\int_{0}^{1} \frac{5x+8}{x^{2}+3x+2} dx$$
 is
(A) $\ln(8)$ (B) $\ln\left(\frac{27}{2}\right)$ (C) $\ln(18)$ (D) $\ln(288)$ (E) divergent

21. The line y = 5 is a horizontal asymptote to the graph of which of the following functions?

(A)
$$y = \frac{\sin(5x)}{x}$$
 (B) $y = 5x$ (C) $y = \frac{1}{x-5}$ (D) $y = \frac{5x}{1-x}$ (E) $y = \frac{20x^2 - x}{1+4x^2}$

22. The power series $\sum_{n=0}^{\infty} a_n (x-3)^n$ converges at x = 5. Which of the following must be true?

- (A) The series diverges at x = 0.
- (B) The series diverges at x = 1.
- (C) The series converges at x = 1.
- (D) The series converges at x = 2.
- (E) The series converges at x = 6.
- 23. If P(t) is the size of a population at time t, which of the following differential equations describes linear growth in the size of the population?
 - (A) $\frac{dP}{dt} = 200$ (B) $\frac{dP}{dt} = 200t$ (C) $\frac{dP}{dt} = 100t^2$ (D) $\frac{dP}{dt} = 200P$ (E) $\frac{dP}{dt} = 100P^2$
- 24. Let f be a differentiable function such that $\int f(x) \sin x \, dx = -f(x) \cos x + \int 4x^3 \cos x \, dx$. Which of the following could be f(x)?
 - (A) $\cos x$ (B) $\sin x$ (C) $4x^3$ (D) $-x^4$ (E) x^4
- 25. $\int_{1}^{\infty} x e^{-x^{2}} dx$ is (A) $-\frac{1}{e}$ (B) $\frac{1}{2e}$ (C) $\frac{1}{e}$ (D) $\frac{2}{e}$ (E) divergent
- 26. What is the slope of the line tangent to the polar curve $r = 1 + 2\sin\theta$ at $\theta = 0$?
 - (A) 2 (B) $\frac{1}{2}$ (C) 0 (D) $-\frac{1}{2}$ (E) -2

27. For what values of p will both series $\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$ and $\sum_{n=1}^{\infty} \left(\frac{p}{2}\right)^n$ converge?

- (A) -2 only $(B) <math>-\frac{1}{2} only$ $(C) <math>\frac{1}{2} only$ $(D) <math>p < \frac{1}{2}$ and p > 2
- (E) There are no such values of p.

28. Let g be a continuously differentiable function with g(1) = 6 and g'(1) = 3. What is $\lim_{x \to 1} \frac{\int_1^x g(t) dt}{g(x) - 6}$?

(A) 0 (B) $\frac{1}{2}$ (C) 1 (D) 2 (E) The limit does not exist.