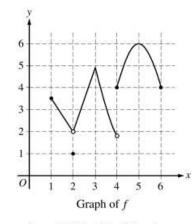
Spring Break Practice Exam No Calculator Multiple Choice

1. If $y = x \sin x$, then $\frac{dy}{dx} =$ (A) $\sin x + \cos x$ (B) $\sin x + x \cos x$ (C) $\sin x - x \cos x$

- (D) $x(\sin x + \cos x)$
- (E) $x(\sin x \cos x)$
- 2. Let f be the function given by $f(x) = 300x x^3$. On which of the following intervals is the function f increasing?
 - (A) $(-\infty, -10]$ and $[10, \infty)$
 - (B) [-10, 10]
 - (C) [0, 10] only
 - (D) $[0, 10\sqrt{3}]$ only
 - (E) [0,∞)

3. $\int \sec x \tan x \, dx =$

(A) $\sec x + C$


(B) $\tan x + C$

(C)
$$\frac{\sec^2 x}{2} + C$$

(D)
$$\frac{\tan^2 x}{2} + C$$

(E) $\sec^2 x \tan^2 x$

(E) $\frac{\sec x \tan x}{2} + C$

4. If $f(x) = 7x - 3 + \ln x$, then f'(1) =(A) 4 (B) 5 (C) 6 (D) 7 (E) 8

- 5. The graph of the function f is shown above. Which of the following statements is false?
 - (A) $\lim_{x \to 2} f(x)$ exists.
 - (B) $\lim_{x\to 3} f(x)$ exists.
 - (C) $\lim_{x \to 4} f(x)$ exists.
 - (D) $\lim_{x \to 5} f(x)$ exists.
 - (E) The function f is continuous at x = 3.
- 6. A particle moves along the x-axis. The velocity of the particle at time t is $6t t^2$. What is the total distance traveled by the particle from time t = 0 to t = 3?
 - (A) 3 (B) 6 (C) 9 (D) 18 (E) 27

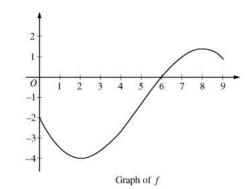
7. If
$$y = (x^3 - \cos x)^5$$
, then $y' =$
(A) $5(x^3 - \cos x)^4$
(B) $5(3x^2 + \sin x)^4$
(C) $5(3x^2 + \sin x)$
(D) $5(3x^2 + \sin x)^4 \cdot (6x + \cos x)$
(E) $5(x^3 - \cos x)^4 \cdot (3x^2 + \sin x)$

t (hours)	4	7	12	15
R(t) (liters/hour)	6.5	6.2	5.9	5.6

8. A tank contains 50 liters of oil at time t = 4 hours. Oil is being pumped into the tank at a rate R(t), where R(t) is measured in liters per hour, and t is measured in hours. Selected values of R(t) are given in the table above. Using a right Riemann sum with three subintervals and data from the table, what is the approximation of the number of liters of oil that are in the tank at time t = 15 hours?

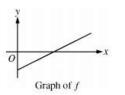
(A) 64.9 (B) 68.2 (C) 114.9 (D) 116.6 (E) 118.2

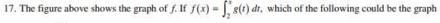
$$f(x) = \begin{cases} \frac{(2x+1)(x-2)}{x-2} & \text{for } x \neq 2\\ k & \text{for } x = 2 \end{cases}$$

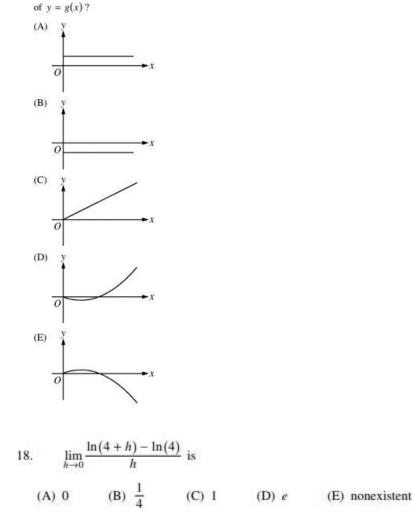

- 9. Let f be the function defined above. For what value of k is f continuous at x = 2?
 - (A) 0 (B) 1 (C) 2 (D) 3 (E) 5
- 10. What is the area of the region in the first quadrant bounded by the graph of $y = e^{x/2}$ and the line x = 2?
 - (A) 2e-2 (B) 2e (C) $\frac{e}{2}-1$ (D) $\frac{e-1}{2}$ (E) e-1
- 11. Let f be the function defined by $f(x) = \sqrt{|x-2|}$ for all x. Which of the following statements is true?
 - (A) f is continuous but not differentiable at x = 2.
 - (B) f is differentiable at x = 2.
 - (C) f is not continuous at x = 2.
 - (D) $\lim_{x \to 2} f(x) \neq 0$
 - (E) x = 2 is a vertical asymptote of the graph of *f*.

12. Using the substitution
$$u = \sqrt{x}$$
, $\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$ is equal to which of the following?
(A) $2\int_{1}^{16} e^{u} du$ (B) $2\int_{1}^{4} e^{u} du$ (C) $2\int_{1}^{2} e^{u} du$ (D) $\frac{1}{2}\int_{1}^{2} e^{u} du$ (E) $\int_{1}^{4} e^{u} du$

13. The function f is defined by $f(x) = \begin{cases} 2 & \text{for } x < 3 \\ x - 1 & \text{for } x \ge 3. \end{cases}$ What is the value of $\int_{1}^{5} f(x) dx$? (A) 2 (B) 6 (C) 8 (D) 10 (E) 12


14. If
$$f(x) = \sqrt{x^2 - 4}$$
 and $g(x) = 3x - 2$, then the derivative of $f(g(x))$ at $x = 3$ is


(A)
$$\frac{7}{\sqrt{5}}$$
 (B) $\frac{14}{\sqrt{5}}$ (C) $\frac{18}{\sqrt{5}}$ (D) $\frac{15}{\sqrt{21}}$ (E) $\frac{30}{\sqrt{2}}$



15. The graph of a differentiable function f is shown above. If $h(x) = \int_0^x f(t) dt$, which of the following is true?

- (A) h(6) < h'(6) < h''(6)(B) h(6) < h''(6) < h'(6)(C) h'(6) < h(6) < h''(6)(D) h''(6) < h(6) < h'(6)(E) h''(6) < h'(6) < h(6)
- 16. A particle moves along the x-axis with its position at time t given by x(t) = (t a)(t b), where a and b are constants and $a \neq b$. For which of the following values of t is the particle at rest?
 - (A) t = ab(B) $t = \frac{a+b}{2}$ (C) t = a+b(D) t = 2(a+b)(E) t = a and t = b

- 19. The function *f* is defined by *f*(*x*) = *x*/*x* + 2. What points (*x*, *y*) on the graph of *f* have the property that the line tangent to *f* at (*x*, *y*) has slope ¹/₂?
 (A) (0,0) only
 (B) (¹/₂, ¹/₅) only
 (C) (0,0) and (-4,2)
 (D) (0,0) and (4, ²/₃)
 - (E) There are no such points.

20. Let $f(x) = (2x + 1)^3$ and let g be the inverse function of f. Given that f(0) = 1, what is the value of g'(1)?

(A) $-\frac{2}{27}$ (B) $\frac{1}{54}$ (C) $\frac{1}{27}$ (D) $\frac{1}{6}$ (E) 6

21. The line y = 5 is a horizontal asymptote to the graph of which of the following functions?

(A)
$$y = \frac{\sin(5x)}{x}$$
 (B) $y = 5x$ (C) $y = \frac{1}{x-5}$ (D) $y = \frac{5x}{1-x}$ (E) $y = \frac{20x^2 - x}{1+4x^2}$

22. Let f be the function defined by $f(x) = \frac{\ln x}{x}$. What is the absolute maximum value of f?

- (A) 1
- (B) $\frac{1}{e}$
- (C) 0
- (D) −e
- (E) f does not have an absolute maximum value.

23. If P(t) is the size of a population at time t, which of the following differential equations describes linear growth in the size of the population?

(A)
$$\frac{dP}{dt} = 200$$

(B) $\frac{dP}{dt} = 200t$
(C) $\frac{dP}{dt} = 100t^2$
(D) $\frac{dP}{dt} = 200P$
(E) $\frac{dP}{dt} = 100P^2$

24. Let g be the function given by $g(x) = x^2 e^{kx}$, where k is a constant. For what value of k does g have a critical point at $x = \frac{2}{3}$?

(A) -3 (B) $-\frac{3}{2}$ (C) $-\frac{1}{3}$ (D) 0 (E) There is no such k.

25. Which of the following is the solution to the differential equation $\frac{dy}{dx} = 2 \sin x$ with the initial

- condition $y(\pi) = 1$?
- (A) $y = 2\cos x + 3$
- (B) $y = 2\cos x 1$
- (C) $y = -2\cos x + 3$
- (D) $y = -2\cos x + 1$
- (E) $y = -2\cos x 1$

26. Let g be a function with first derivative given by $g'(x) = \int_0^x e^{-t^2} dt$. Which of the following must be true on the interval 0 < x < 2?

- (A) g is increasing, and the graph of g is concave up.
- (B) g is increasing, and the graph of g is concave down.
- (C) g is decreasing, and the graph of g is concave up.
- (D) g is decreasing, and the graph of g is concave down.
- (E) g is decreasing, and the graph of g has a point of inflection on 0 < x < 2.

27. If
$$(x + 2y) \cdot \frac{dy}{dx} = 2x - y$$
, what is the value of $\frac{d^2y}{dx^2}$ at the point (3, 0)?
(A) $-\frac{10}{3}$ (B) 0 (C) 2 (D) $\frac{10}{3}$ (E) Undefined

- 28. For $t \ge 0$, the position of a particle moving along the x-axis is given by $x(t) = \sin t \cos t$. What is the acceleration of the particle at the point where the velocity is first equal to 0?
 - (A) $-\sqrt{2}$ (B) -1 (C) 0 (D) 1 (E) $\sqrt{2}$